X染色体的故事(它如何决定我们的人生)

作者&投稿:唐柴 (若有异议请与网页底部的电邮联系)
什么是染色体有什么作用~

 细胞核内由核蛋白组成、能用碱性染料染色、有结构的线状体,是遗传物质基因的载体。
  在生物的细胞核中,有一种易被碱性染料染上颜色的物质,叫做染色质。染色体只是染色质的另外一种形态。它们的组成成分是一样的,但是由于构型不一样,所以还是有一定的差别。染色体在细胞的有丝分裂期由染色质螺旋化形成。用于化学分析的原核细胞的染色质含裸露的DNA,也就是不与其他类分子相连。而真核细胞染色体却复杂得多,由四类分子组成:即DNA,RNA,组蛋白(富有赖氨酸和精氨酸的低分子量碱性蛋白,至少有五种不同类型)和非组蛋白(酸性)。DNA和组蛋白的比例接近于1:1。
  正常人的体细胞染色体数目为23对,并有一定的形态和结构。染色体在形态结构或数量上的异常被成为染色体异常,由染色体异常引起的疾病为染色体病。现已发现的染色体病有100余种,染色体病在临床上常可造成流产、先天愚型、先天性多发性畸形、以及癌肿等。染色体异常的发生率并不少见,在一般新生儿群体中就可达0.5%~0.7%,如以我院平均每年3000新生儿出生数计算,其中可能有15~20例为染色体异常者。而在早期自然流产时,约有50%~60%是由染色体异常所致。染色体异常发生的常见原因有电离辐射、化学物品接触、微生物感染和遗传等。临床上染色体检查的目的就是为了发现染色体异常和诊断由染色体异常引起的疾病。
  染色体检查是用外周血在细胞生长刺激因子——植物凝集素(PHA)作用下经37℃,72小时培养,获得大量分裂细胞,然后加入秋水仙素使进行分裂的细胞停止于分裂中期,以便染色体的观察;再经低渗膨胀细胞,减少染色体间的相互缠绕和重叠,最后用甲醇和冰醋酸将细胞固定于载玻片上,在显微镜下观察染色体的结构和数量。正常男性的染色体核型为44条常染色体加2条性染色体X和Y,检查报告中常用46,XY来表示。正常女性的常染色体与男性相同,性染色体为2条XX,常用46,XX表示。46表示染色体的总数目,大于或小于46都属于染色体的数目异常。缺失的性染色体常用O来表示。
  人体内每个细胞内有23对染色体.包括22对常染色体和一对性染色体. 性染色体包括:X染色体和Y染色体。含有一对X染色体的受精卵发育成女性,而具有一条X染色体和一条Y染色体者则发育成男性。这样,对于女性来说,正常的性染色体组成是XX,男性是XY。这就意味着,女性细胞减数分裂产生的配子都含有一个X染色体;男性产生的精子中有一半含有X染色体,而另一半含有Y染色体。精子和卵子的染色体上携带着遗传基因,上面记录着父母传给子女的遗传信息。同样,当性染色体异常时,就可形成遗传性疾病。男性不育症中因染色体异常引起者约占2%~21%,尤其以少精子症和无精子症多见。
  哺乳动物雄性个体细胞的性染色体对为XY;雌性则为XX。
  鸟类的性染色体与哺乳动物不同:雄性个体的是ZZ,雌性个体为ZW。
  鸭嘴兽有5对性染色体,25种性别。作用:染色体研究是临床遗传学研究的基础。测序结果表明X染色体包涵多达1100种基因。但另人吃惊的是,与之相关的疾病也有百余种,如X染色体易碎症、血友病、孤独症、肥胖肌肉萎缩病和白血病等。看来这条染色体决不容小视!
  X染色体对应的另一半就是Y染色体。人类Y染色体的测序工作也已经完成,并且发现它并没有人们之前想象的那样脆弱。Y染色体上有一个“睾丸”决定基因则对性别决定至关重要。目前已经知道的与Y染色体有关的疾病有十几种。 染色体及染色体相关疾病编辑本段  如果将人类基因组比作一本厚重的书,这本书则由23章组成,而每章都有它自己的故事。到目前为止,已经完成基因测序的常染色体还包括5、6、7、9、10、13、14、16、19、20、21、22染色体。染色体疾病的特点是大段的基因缺损或重复而使患者的智力和外观发育甚至身体多个器官发生明显异常,如唐氏综合病和微缺损症。 基因组测序研究的新进展编辑本段  基因组研究以国际人类基因组计划为代表,是当今生物技术研究的“热中之热”。人类基因组草图的完成宣告了一个新时代——后基因组时代的到来。目前已经完成基因组测序的动物还有秀丽线虫(1998年)、果蝇(2000年)、狗(2004年)和小鸡(2004年)等。我国研究人员独立完成了水稻、家蚕、鸡、吸血虫等物种的全基因组测序工作。 染色体检查的临床适应症编辑本段   一、生殖功能障碍者
  在不孕症、多发性流产和畸胎等有生殖功能障碍的妇夫中至少有7%~10%是染色体异常的携带者。常见的有染色体结构异常如平衡易位和倒位以及数量异常如由于女性少一条X染色体造成的45,XO,或多一条Y染色体造成的47XXY。平衡易位和倒位由于无基因的丢失,携带者本身常并不发病,却可因其生殖细胞染色体异常而导致不孕症、流产和畸胎等生殖功能障碍。性染色体数目异常除可造成不孕外,还常出现第二性征异常。
  二、第二性征异常者
  常见于女性,如有原发性闭经、性发育不良,伴身材矮小、肘外翻、盾状胸和智力稍有低下,阴毛、腋毛少或缺如,后发际低,不育等,应考虑是否有X染色体异常。常见的X染色体异常有特纳氏综合征和环形X染色体。特纳氏综合征患者比正常女性少一条X染色体,其染色体核型为:45,XO。环形X染色体患者由于某种原因使X染色体两端同时出现断裂,并在断裂部位重接形成,环形染色体越小临床症状越重。早期发现这些异常并给予适当的治疗可使第二性征得到一定程度地改善,也可能获得生育能力。
  三、外生殖器两性畸形者
  对于外生殖器分化模糊,如阴茎伴尿道下裂,阴蒂肥大呈阴茎样,根据生殖器外观常难以正确决定性别的患者,通过性染色体的检查有助于做出明确诊断。根据染色体检查结果和临床其它检查,两性畸形可分为真两性畸形、假两性畸形、性逆转综合征等几种不同情况。
  1.真两性畸形:内生殖器同时存在着两性的特征,即体内同时存在睾丸、输精管和卵巢、输卵管。染色体检查表现为两种类型:1、46,XX/46,XY,即一个机体内存在着两个细胞系,每种细胞的比例决定性别取向,产生的原因:X精子和Y精子同时与两个卵子受精后融合,或X精子和Y精子同时与卵细胞和刚形成、尚未排出卵外的极体分别受精所致。2、核型是46,XX,但是Y染色体的某些基因或片段易位于X染色体上,或常染色体基因突变而具有Y染色体的功能。
  2.假两性畸形:有进一步分为女假两性畸形和男假两性畸形。女假两性畸形内生殖器表现为女性,有子宫、卵巢、输卵管,染色体检查为46,XX。男性假两性畸形内生殖器表现为男性即性腺是睾丸,染色体核型是46,XY。
  3.性逆转综合征:即染色体核型与表型相反,例如核型是女性核型46,XX,但表型却似男性;或核型是男性核型46,XY,但表型却似女性。46,XX男性的主要临床表现有睾丸发育不良,隐睾,阴茎有尿道下裂,精子少或无精子,可有喉节、胡须。腋毛稀疏,群体发病率:1/2万。46,XY女性的主要临床表现有身材较高,卵巢为条索状,无子宫,盲端阴道,原发性闭经,乳房不发育。
  四、先天性多发性畸形和智力低下的患儿及其父母染色体病的特点就是多发性畸形和智力低下,常见临床特征有,头小、毛发稀而细、眼距宽、耳位低、短颈、鼻塌而短、外生殖器发育不良、腭裂、肌张低下或亢进、颠痫、通贯掌、肛门闭锁、身材矮小、发育迟缓、眼裂小、发际低、持续性新生儿黄疸及明显的青斑、眼睑下垂、心脏畸形、肾脏畸形、虹膜或视网膜缺损等。染色体检查可发现有21-三体综合征等异常。
  五、性情异常者
  身材高大、性情凶猛和有攻击性行为的男性,有些可能为性染色体异常者。如XYY综合征,染色体检查表现为比正常男性多一条Y染色体,染色体核型表现为47,XYY。患者多数表型正常,即健康情况良好,常有生育能力,但子代男性中同样为47,XYY的机会大于正常人群。该病的发病率占一般男性人群的1/750。男性如出现身材修长、四肢细长、阴茎小、睾丸发不发育和精液中无精子者,有时还可以伴有智力异常,应通过染色体检查确定是否患有可氏综合症,该病患者比正常男性多一条X染色体,染色体核型表现为原`原47,XXY。其发病率在一般男性中为1/800,在男性精神发育不全者中为1%,而在男性不孕者中可高达1/10。
  六、接触过有害物质者
  辐射、化学药物、病毒等可以引起染色体的断裂,如果染色体裂后原来的片段未在原来的位置上重接,将形成各种结构异常的染色体,如缺失、易位、倒位、重复、环形染色体等,这些畸变如发生在体细胞可以引起一些相应的疾病,例如肿瘤。如畸变发生在生殖细胞就发生遗传效应,殃及子代,可以引起流产、死胎、畸形儿。
  七、婚前检查
  婚前检查可以发现表型正常的异常染色体携带者,如染色体平衡易位、倒位,染色体的平衡易位和倒位由于基因不丢失而表型正常,但极易引起流产、畸胎、死胎,盲目保胎会引起畸形儿的出生率增加。婚前检查还可以发现表形基本正常,但性染色体异常者,这些患者可表现为性功能障碍、无生育能力等。因此,婚前检查对优生优育有着重要的意义。
  八、白血病及其它肿瘤患者
  白血病及其它肿瘤时出现的染色体异常可使血细胞的癌基因表达,使血细胞无控制的恶性生长。不同的白血病常有各自的特征性染色体异常,因此染色体检查有助于白血病的诊断和预后判定。
  1.慢性粒细胞白血病:Ph染色体是其标记染色体,由9号和22号染色体部份片段相互易位形成的。Ph染色体的出现为慢性粒细胞白血病的确诊指标,治疗过程中Ph染色体的出现或消失,还可作为疗效和愈后的参考指标。
  2.急性非淋巴细胞白血病:染色体改变主要为8号和21号染色体相互易位,以及15号和17号染色体相互易位,形成4条异常染色体,并且增加一条12号染色体。
  3.急淋巴细胞白血病:染色体检查可发现8号和14号染色体相互易位,4号和11号染色体相互易位,9号和22号染色体相互易位形成的6条异常染色体并增加一条21号染色体。
  染色体与遗传学
  由于Y染色体的特殊性,在分子人类学等诸多新进人类学分支上也作为了一种寻找世系的手段,例如Y-SNP,Y-STR检测等,目前在这方面国内比较权威的有上海复旦大学李辉博士,文波、金力先生等人。染色体的包装实际上是指细胞核DNA在双螺旋基础上的进一步结构变化,巨大的DNA链要包装成染色体需经多层次的结构变化才能实现.这些结构变化总的看是更高层次的超螺旋形成.上面讨论的核小体,可视为染色体DNA的一级包装,即由直径2nm的DNA双螺旋链绕组蛋白形成直径11nm的核小体"串珠"结构.若以每碱基对沿螺旋中轴上升距离为0.34nm计,200bpDNA(一个核小体的DNA片段)的伸展长度为68nm,形成核小体后仅为11nm(核小体直径),其长度压缩了6-7倍.在低离子强度和去H1组蛋白的条件下,电镜下可清晰地看到染色体一级包装的核小体纤维。若增大离子强度,并保留H1,通过电镜可观察到10nm纤维会折转成较粗的30nm纤维,这种纤维即染色体DNA的二级包装,目前较公认的二级包装结构模型是螺线管纤维(solenoidalfiber).它是由核小体纤维盘绕形成的一种中空螺线管,其外径为30nm,每圈含6个核小体,因此,螺线管的形成使DNA一级包装又压缩小6倍.若以充分伸展的DNA双螺旋论,每个螺线管包含了408nm(6×68nm)长度的DNA链,而每圈螺线管的长度几乎等于核小体直径,即11nm,故染色体的二级包装相当于将DNA长度压缩了近40倍.H1组蛋白在维持毗邻核小体的紧密度及核小体纤维折转形成螺线管中起了重要作用.
螺线管纤维基础上的更高一级包装是形成环状螺线管.电镜观察结果提示,这种结构是30nm、纤维缠绕在一个由某些非组蛋白构成的中心轴(centralaxis)骨架上形成的.即螺线管纤维相隔一定间距的某些区段被"拉拢"固定在蛋白轴上,从而产生了许多从骨架上伸出的纤维环(loops).动物细胞中每个纤维环包含了5-10×104bpDNA,这显然使螺线管纤维得到了较大程度的压缩.据认为,纤维环的形成是基因表达较理想的结构,这些环状区是基因表达的活性单位所在.从纤维环DNA比其它区域有更伸展的结构来理解这一点似乎是合理的.由DNA双链螺旋经三级包装环状螺线管的过程参见图1-21的模式.上述三级包装完成后,DNA链被压缩的程度仍远不足以形成能被细胞核容纳的染色体.具环形区的螺线管纤维需进一步以某种方式盘绕、折叠,最终完成细胞生长和繁殖的不同时期的染色体包装.这种在更高层次上的复杂的包装是以何种方式进行的,目前尚无明确定论.但无疑是染色体DNA包装的重要内容.从螺线管纤维环到包装形成染色体,应该是DNA压缩程度最高的阶段,估计在200-240倍.经各级包装后染色体DNA总共被压缩了数千倍,这样,才能使每个染色体中几厘米长(如人染色体的DNA分子平均长度为4cm)的DNA分子容纳在直径数微米(如人细胞核的直径为6-7μm)的细胞核中。


编辑导读生动、诙谐……本书是深入浅出介绍科学理论的完美典范。《基尔库克评论》戴维?班布里奇带领我们经历了一趟美妙销魂的×染色体之旅,并向我们解释了对×染色体的携带者?也就是我们每个人,男人和女人?而言,拥有这些精心折叠、无限狭窄、含有几乎毫无重量可言的遗传密码的两英寸长细线,到底意味着什么。他将历史轶闻与个人趣事交织在一起,辅之以富有时代气息的科学概括,并不时点缀以班布里奇搞笑的?以及地道英国式的?插科打诨,从而使这本信息充斥的书籍读起来朗朗上口,令人欣喜不已。萨拉?布拉菲尔?赫迪《母性:母亲、婴儿和自然选择的历史》一书的作者《×染色体的故事》极其吸引人的眼球,非常有趣,实际上,我发现自己拿起它来就爱不释手。戴维?班布里奇在对×染色体的最新遗传学研究中,精心汲取了海量的新鲜信息,并以普通读者比较容易理解的方式,明确阐释了这些重大发现。本书以不经意的调侃、恰如其分的比喻和精巧灵活的词语转折陈述了科学理论,所有这些调侃、比喻和转折,使枯燥的文章显得生动活泼,并为读者提供了令人兴趣盎然的方法,去思考晦涩难懂的思想观点。这是一本集知识性、权威性和极大趣味性为一体的读物:它是我近年来读过的绝佳作品之一。简?兰开斯特,《人性》杂志及新墨西哥大学科学主编这是一部令人赞叹的作品?笔触优美、观点明确,没有令人费解的行话,还伴之以趣闻轶事,能牢牢吸引读者的注意力。蒂姆?伯克黑德,《滥交:精子竞争进化史》一书的作者内容简介有一小块遗传信息决定着我们的性别;它还使我们当中许多人一辈子病魔缠身,支配或破坏着我们机体的日常运转,并迫使女性作为一个遗传嵌合体而存在。罪魁祸首是?虽然它必不可少,但它同时也是这场剧变的根源?X染色体,这便有了它的传奇生涯。《X染色体的故事》一书系统回顾了这位令人着迷的基因组成成员的文化史和自然史,笔触幽默,令我们茅塞顿开。本书沿着X染色体的进化历程信步走来,引领我们对X染色体的本质获得最新理解。从它在19世纪被偶然发现,到当代研究工作的前途和结论,戴维?班布里奇告诉我们,X染色体是怎样进化的、它和它的搭档Y染色体将何去何从、它如何帮助赋予发育中的人类婴儿以性别?甚至可能赋予他(她)们性特征?以及它怎样通过无比复杂而又微妙的方式影响我们的生活。X染色体能提供治病方法,挑战我们与男女特质有关的文化、伦理和科学观念,甚至已经重塑了我们对人类进化和人性的看法。作者简介本书目录序言第一章 生而不同小插曲:揭开X染色体的神秘面纱第二章 从“皇室病”说起小插曲:X染色体到底与性别有何关联?第三章 女性生活的两重性小插曲:精挑细选深入阅读词汇表精彩书摘这一切到底该怎样解释呢?赫尔曼?亨金(Hermann Henking)聚精会神地低头盯着显微镜,竭力想弄清载玻片上的紫色小斑点为何会有如此奇特的行为。此时是1890年,全世界的科学家都在研究这些斑点,然而,它们似乎一如既往地神秘莫测。许多人自以为握有通向生物学圣殿的钥匙?即允许后代从父母那里继承某些性状的机制?但没有人能够证明这一点。 亨金坐在莱比锡自己那阴暗破旧的实验室时,本来会获得一个重大发现,引起遗传学的一场革命,但他还是使该学科倒退了十年。他的研究本可直接达到我们现在对性别和遗传的认识水平,但在接下来的十年里,却没有人认识到他的研究的重大意义。实际上,在另一位动物学家将亨金所获成就的重要性告诉他之前,亨金自己又等待了30年。翻开历史可以发现,19世纪90年代是饱受挫折的十年。查尔斯?达尔文(Charles Darwin)已经在《物种起源》(On ThP0lrigin of Species)一书中阐明,只要父母能将性状遗传给后代,随着时间推移,外界力量就能改变物种。但谁也说不出所有这些遗传是怎样发生的。每个人都知道,孩子通常像父母,小牛、幼驹、幼犬、雏猫似乎都是这样?其实,如果费点力气去找,你细心观察到的任何一类动物差不多都具有家族相似性。所以,遗传大概是一种普遍现象,不过没人能解释它罢了。很多动物学家认为,少数精子和卵子携带了指令,使每个下一代个体和其上一代相似。多数人认为,一定存在某种物质手段,将这些指令赋予某个新个体,但极少数人仍然主张说,遗传是一种精神过程而不是物质过程?他们相信,如果非得说遗传是尘世间的事,也许会使上帝失去主宰芸芸众生的中心地位。这时候,亨金出现了,他获得了新的发现,并于后来结束了全部争论。他发现了遗传机制,但根本没意识到这一点。尽管听起来似乎没有希望,亨金疲劳的双眼还是被眼前这些染色体牢牢吸引。这些染色体来自一种名为“pyrrhocoris(红蝽)”的昆虫的生殖器。25年前,探索遗传机制的那一代科学家将一种极小的新型染料注入染色体(即“有色体”),使其能被肉眼从显微镜中看清。他们发现,这些染色体的行为方式优雅而反常。生物体内的每个细胞都带有一套染色体,但老实说,大部分时间里,这些染色体看起来并没有很特别的地方。染色体突然充满活力的时候,就是一个细胞分裂成两个子细胞的时候。染色体神奇地由模糊而散乱的物质,变成界线分明、排列整齐的一组细线,精巧地排在细胞中央。更令人着迷的是,染色体接着经过精心梳理,分成了一模一样的两束,每束染色体各钻进一个子细胞。由此看来,既然染色体如此整齐地在细胞间一分为二,它们一定是完成了某件意义非凡的大事,那么,染色体是否就是科学家们苦苦寻觅的遗传指令呢?亨金那时并不在研究苍蝇的生殖器,因为他对苍蝇的生殖器珍爱有加。科学家可能是行为怪异之人,但通常不会怪得离谱。很显然,染色体最吸引人的一个特点,只有在睾丸和卵巢里才能体现,因为细胞是在那里分裂并生成精子或卵子(即制造下一代的细胞)的。与那些制造其他所有细胞的分裂过程相比,生成精子或卵子的细胞分裂过程似乎有很大不同。这个过程与在其他细胞形成时发生的单步细胞分裂不同,而是染色体要经历两步连续分裂过程,并严密设计两个过程的前后顺序,在两次分裂期间,染色体处于一种彼此不断接触的活跃状态。假如染色体与遗传无关,那么,为什么在精子和卵子形成时,染色体要这样极其优美地跳跃呢?正是带着这个问题,亨金进行了他的观察,从而使他的名字永远载人了生物学发展的史册。他注意到,分开的两组染色体在红蝽生殖器内优雅地舞动时,有一条染色体却静静地待在附近,没有加入这场狂欢。由于它少言寡语,舞动结束时,它并未在子代细胞间被均分为两部分?最终,它只是在精子的某一半内找到了自己的归宿。看上去它似乎和所有其他染色体没有什么两样,但亨金就是不懂为什么它要作壁上观。他满腹狐疑地给它起了个名字叫“受冷落染色体”(wallflower chromosome),虽然我们还未完全明白为什么他会选择这个名字。也许是因为它的神秘,或者是因为它的出现有点“特别”,要不,就是因为它显然是一条多余的“非染色体”(ex?chromosome)。他称之为“X”染色体。这个名字沿用至今。迄今为止,多数其他染色体都有许多通俗而单调的名称,而X仍然是谜一样的X。它是特殊的,不过这种特殊性亨金还没有完全认识到罢了。P1-3


从遗传学角度来说,若不想孩子将来长得丑就要怎么找对象?
难道孩子长得丑真的怪女方吗?其实从遗传学的角度来看,孩子的外貌问题受男方的影响更大,尤其是男孩,Y染色体起到关键作用,女孩可能男女平等一些。常染色体和性染色体的故事不论男性还是女性,在分子学上我们都是由22对常染色体和1对性染色体构成的,常染色体不会决定胎儿的性别,但会决定我们很多的性状...

染色体是什么,它在人体内起什么作用
如畸变发生在生殖细胞就发生遗传效应,殃及子代,可以引起流产、死胎、畸形儿。七、婚前检查。婚前检查可以发现表型正常的异常染色体携带者,如染色体平衡易位、倒位,染色体的平衡易位和倒位由于基因不丢失而表型正常,但极易引起流产、畸胎、死胎,盲目保胎会引起畸形儿的出生率增加。婚前检查还可以发现表形...

染色体有什么用啊?
染色体及染色体相关疾病\\x0d\\x0a如果将人类基因组比作一本厚重的书,这本书则由23章组成,而每章都有它自己的故事。到目前为止,已经完成基因测序的常染色体还包括5、6、7、9、10、13、14、16、19、20、21、22染色体。染色体疾病的特点是大段的基因缺损或重复而使患者的智力和外观发育甚至身体多个...

染色体是什么,它在人体内起什么作用
染色体可以携带“遗传基因”但是不能传递“打开信息”,打开某个基因段的所有信息都是通过染色体端点或染色体外的蛋白质发挥作用才完成分裂或复制的。分裂是染色体整体的,复制是染色体某个基因片段的。如果将人类基因组比作一本厚重的书,这本书则由23章组成,而每章都有它自己的故事。到目前为止,已经...

染色体是什么意思
染色体的分裂分叁种;一是母钟分裂,这个一般发生在受精卵的早期,人类具体就是从一条受精卵分裂为个体的23对染色体的过程,意思是按照母体蓝图进行子代分裂,被分裂的23对染色体分别可以造出各种组织器官,如果第一条是造肝的,那么它上面的所有造肝的基因片段都被打开,相反其它器官的制造信息都被关闭,这个过程母体蓝图染色...

Y染色体上的基因有什么作用?
这种交换改变了遗传物质,有利于物种除去有害的变异。由于变异DNA区域在基因上的扩展,X染色体与其相配对的那条染色体之间的交换越来越少。随着时间的推移,Y染色体便诞生了。这个染色体演变故事的情节可以和任何一部小说相媲美。Y染色体只在男性体内存在。任何一个卵子与携带Y染色体的精子相遇受精,...

阴阳人是指什么样的人【阴阳人是什么意思网络用语】
“哦。那会不会有人具备XY染色体却是女人,有人是XX染色体,却是男人呢?”我被朋友的脑洞惊呆了。“你骨骼清奇,绝对是学医的好料子!”“的确,这种事情存在!”小伙伴已经被惊呆了。“我给你讲讲Y染色体的故事吧。”我看到了朋友迷离的眼神。“1959年,生物学家发现Y染色体能决定人的男性特征。

谁发现了“会跳舞的基因”?这其中有哪些故事呢?
巴巴拉·麦克林托克是美国遗传学家,1902出生于美国康涅狄格州,1923年在康乃尔大学农学院获理学学士学位,1927年获植物学博士学位。而后,麦克林托克主要从事玉米遗传学的研究,在玉米中发现了“会跳舞的基因”。她一生未婚,但对玉米可以说是情有独钟。有关玉米染色体遗传变异的许多重大发现(如易位、倒位、...

xy是什么意思?
染色体特点:当细胞不分裂时,染色体在细胞核中是不可见的——在显微镜下也是如此。然而,构成染色体的 DNA 在细胞分裂过程中变得更紧密,染色体在显微镜下可见。每条染色体都有一个叫做着丝粒(点)的收缩点,它将染色体分成两个部分,即“臂”。短臂为“p臂”;长臂为“q臂”。 着丝粒(点)在每条...

有第五号染色体引发的故事
猫叫综合征 第五号染色体的短臂缺失

景洪市18965067500: X染色体怎么决定女孩的生长轨迹?
闳寇美格: 小小的X染色体,不仅可以决定女孩的性别,还可以决定女孩一生成长的轨 迹,这是一件多么奇妙的事情.当然,在女孩的成长过程中,X染色体还要得到雌 性激素的“帮助”.正是在雌性激素的共同作用下,女孩才表现出很多不同于男孩 的特质——在青春期出现第二性征并最终成为一个成熟的女性.在现实生活中,我 们大都对女孩有“安静、乖巧”的印象,她们通常表现得都很文静、懂事.同龄的 女孩比男孩要听话得多,她们在学校里是好学生,在家里也是乖乖女.大部分女孩 都喜欢与人交往,很快就可以融入陌生的新环境中.一般女孩都会有很多朋友,她 们也很会讨父母和老师的欢心.

景洪市18965067500: 孩子的智力遗传主要来自于谁
闳寇美格: 孩子的智商决定于母亲?父亲慌了…有一篇文章,说母亲决定了孩子的智商,看完我百感交集.如果这是真的,天才基因还需要靠女儿传宗接代,那么聪明男人就应该生女...

景洪市18965067500: 决定智商的基因都在X染色体上?母亲决定儿子的智商? -
闳寇美格: 呵呵,我来和你讨论下,我学得专业是医学,我觉得你的想法不对. 决定智力的是脑,脑是有神经细胞构成的复杂的神经网络,这些编码的基因都是在常染色体上.然后呢,智力不仅仅是遗传的,和环境还有很大关系. 具体的呢,以后我还可以和你讨论,但我要告诉你,父亲的遗传对儿子的智力是决定性的.

景洪市18965067500: 性染色体是怎样决定性别的?
闳寇美格: 其中22对为常染色体,男女都一样;还有一对是性染色体,男女不同,女性是2条X染色体,而男性只有1条X染色体,另一条是Y染色体

景洪市18965067500: 看了篇文章,说决定智商的基因都在X染色体上,母亲对孩子智商影响较大... -
闳寇美格: 你学过基因学吗?或者你念过高二的生物吗?你没念过我不怪你 父亲的性染色体是 X Y 母亲的性染色体是 X X 儿子:父亲那里得到 Y 母亲那里得到 X 只有XY才是男孩 女儿则是:父亲那里得到 X 母亲那里得到 X 女儿的是XX 生男生女是父亲决定的 你说决定智商的基因都集中在X上 那么女儿有2个X,是XX,而儿子只有一个X,是XY 这么说来女儿要比儿子聪明咯? 敢问爱因斯坦和比尔·盖茨都是女生吗? 要是依你的说法 全世界的女人都要比男人聪明咯? 因为她们比男人多一个X!

景洪市18965067500: 人的X染色体具有先把性失活的机制,在女性的染色体中有一条X为失活的,书上说形成受精卵后会随机失活一条 -
闳寇美格: 在X染色体上主要是性别决定基因,如果性别决定基因出现大的变异的话,会引起不育,因此变异不会保留下来.所以来自父母的染色体X基因不会有大的差别,因此不管随机失活哪一条染色体,对女孩的性状不会造成大的影响

景洪市18965067500: 染色体是xxy - xxy型染色体是怎么形成的?
闳寇美格: 与父亲或母亲都可能有关1.第一种可能是由于初级卵母细胞在减数第一次分裂期间因纺锤体有问题而不能生成纺锤丝,引起同源染色体未能分离,经减数第二次分裂形成了xx卵子,与含y精子结合就形成了xxy型染色体.2.第二种可能是由于次级卵母细胞在减数第二次分裂期间因纺锤体有问题而不能生成纺锤丝,引起姐妹染色单体分离后未到两个细胞中去,而形成了xx卵子,与含y精子结合就形成了xxy型染色体.3..第三种可能是由于初级精母细胞在减数第一次分裂期间因纺锤体有问题而不能生成纺锤丝,引起同源染色体未能分离,经减数第二次分裂形成了xy精子,与含x卵子结合就形成了xxy型染色体.

景洪市18965067500: 决定性别分化的各个水平及其决定性别的机制是怎样的?
闳寇美格: 过去我们认为染色体性别为性别的决定因素,这在大多数儿童 中是对的,但对于有些儿童,染色体性别和社会性别存在明显的不一 致.染色体性别为性别分化的第一个决...

景洪市18965067500: 人的性别是由一对性染色体决定的,女性为XX,男性为 - ------
闳寇美格: 性染色体是与决定性别有关的染色体,人类的性染色体是X和Y染色体,X染色体较大,Y染色体较小;人的体细胞内的23对染色体,有一对染色体与人的性别有关,叫做...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网