遗传算法

作者&投稿:延呼 (若有异议请与网页底部的电邮联系)
遗传算法的优缺点?~


1、早熟。这是最大的缺点,即算法对新空间的探索能力是有限的,也容易收敛到局部最优解。
2、大量计算。涉及到大量个体的计算,当问题复杂时,计算时间是个问题。
3、处理规模小。目前对于维数较高的问题,还是很难处理和优化的。
4、难于处理非线性约束。对非线性约束的处理,大部分算法都是添加惩罚因子,这是一笔不小的开支。
5、稳定性差。因为算法属于随机类算法,需要多次运算,结果的可靠性差,不能稳定的得到解。
大致这些,lz可查阅相关专业书籍!

遗传算法实例:

也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。
对于初学者,尤其是还没有编程经验的非常有用的一个文件
遗传算法实例

% 下面举例说明遗传算法 %
% 求下列函数的最大值 %
% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %
% 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 %
% 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一个二值数。 %
% %
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%

% 编程
%-----------------------------------------------
% 2.1初始化(编码)
% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),
% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序
%Name: initpop.m
%初始化
function pop=initpop(popsize,chromlength)
pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵,
% roud对矩阵的每个单元进行圆整。这样产生的初始种群。

% 2.2 计算目标函数值
% 2.2.1 将二进制数转化为十进制数(1)
%遗传算法子程序
%Name: decodebinary.m
%产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制
function pop2=decodebinary(pop)
[px,py]=size(pop); %求pop行和列数
for i=1:py
pop1(:,i)=2.^(py-i).*pop(:,i);
end
pop2=sum(pop1,2); %求pop1的每行之和

% 2.2.2 将二进制编码转化为十进制数(2)
% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置
% (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),
% 参数1ength表示所截取的长度(本例为10)。
%遗传算法子程序
%Name: decodechrom.m
%将二进制编码转换成十进制
function pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);

% 2.2.3 计算目标函数值
% calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。
%遗传算法子程序
%Name: calobjvalue.m
%实现目标函数的计算
function [objvalue]=calobjvalue(pop)
temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数
x=temp1*10/1023; %将二值域 中的数转化为变量域 的数
objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值

% 2.3 计算个体的适应值
%遗传算法子程序
%Name:calfitvalue.m
%计算个体的适应值
function fitvalue=calfitvalue(objvalue)
global Cmin;
Cmin=0;
[px,py]=size(objvalue);
for i=1:px
if objvalue(i)+Cmin>0
temp=Cmin+objvalue(i);
else
temp=0.0;
end
fitvalue(i)=temp;
end
fitvalue=fitvalue';

% 2.4 选择复制
% 选择或复制操作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。
% 根据方程 pi=fi/∑fi=fi/fsum ,选择步骤:
% 1) 在第 t 代,由(1)式计算 fsum 和 pi
% 2) 产生 {0,1} 的随机数 rand( .),求 s=rand( .)*fsum
% 3) 求 ∑fi≥s 中最小的 k ,则第 k 个个体被选中
% 4) 进行 N 次2)、3)操作,得到 N 个个体,成为第 t=t+1 代种群
%遗传算法子程序
%Name: selection.m
%选择复制
function [newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue); %求适应值之和
fitvalue=fitvalue/totalfit; %单个个体被选择的概率
fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],则 cumsum(fitvalue)=[1 3 6 10]
[px,py]=size(pop);
ms=sort(rand(px,1)); %从小到大排列
fitin=1;
newin=1;
while newin<=px
if(ms(newin))<fitvalue(fitin)
newpop(newin)=pop(fitin);
newin=newin+1;
else
fitin=fitin+1;
end
end

% 2.5 交叉
% 交叉(crossover),群体中的每个个体之间都以一定的概率 pc 交叉,即两个个体从各自字符串的某一位置
% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:
% x1=0100110
% x2=1010001
% 从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:
% y1=0100001
% y2=1010110
% 这样2个子代个体就分别具有了2个父代个体的某些特征。利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。
% 事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。
%遗传算法子程序
%Name: crossover.m
%交叉
function [newpop]=crossover(pop,pc)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:2:px-1
if(rand<pc)
cpoint=round(rand*py);
newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];
newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
else
newpop(i,:)=pop(i);
newpop(i+1,:)=pop(i+1);
end
end

% 2.6 变异
% 变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率 pm 翻转,即由“1”变为“0”,
% 或由“0”变为“1”。遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。
%遗传算法子程序
%Name: mutation.m
%变异
function [newpop]=mutation(pop,pm)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:px
if(rand<pm)
mpoint=round(rand*py);
if mpoint<=0
mpoint=1;
end
newpop(i)=pop(i);
if any(newpop(i,mpoint))==0
newpop(i,mpoint)=1;
else
newpop(i,mpoint)=0;
end
else
newpop(i)=pop(i);
end
end

% 2.7 求出群体中最大得适应值及其个体
%遗传算法子程序
%Name: best.m
%求出群体中适应值最大的值
function [bestindividual,bestfit]=best(pop,fitvalue)
[px,py]=size(pop);
bestindividual=pop(1,:);
bestfit=fitvalue(1);
for i=2:px
if fitvalue(i)>bestfit
bestindividual=pop(i,:);
bestfit=fitvalue(i);
end
end

% 2.8 主程序
%遗传算法主程序
%Name:genmain05.m
clear
clf
popsize=20; %群体大小
chromlength=10; %字符串长度(个体长度)
pc=0.6; %交叉概率
pm=0.001; %变异概率

pop=initpop(popsize,chromlength); %随机产生初始群体
for i=1:20 %20为迭代次数
[objvalue]=calobjvalue(pop); %计算目标函数
fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度
[newpop]=selection(pop,fitvalue); %复制
[newpop]=crossover(pop,pc); %交叉
[newpop]=mutation(pop,pc); %变异
[bestindividual,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值
y(i)=max(bestfit);
n(i)=i;
pop5=bestindividual;
x(i)=decodechrom(pop5,1,chromlength)*10/1023;
pop=newpop;
end

fplot('10*sin(5*x)+7*cos(4*x)',[0 10])
hold on
plot(x,y,'r*')
hold off

[z index]=max(y); %计算最大值及其位置
x5=x(index)%计算最大值对应的x值
y=z

【问题】求f(x)=x 10*sin(5x) 7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x 10*sin(5*x) 7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代
运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2 x2.^2)))-exp(0.5*(cos(2*pi*x1) cos(2*pi*x2))) 22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv) 22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055
大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x 10*sin(5*x) 7*cos(4*x)',[0,9])
evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代
运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055
大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。
打字不易,如满意,望采纳。


嵌入式与神经网络(四):DNN算法
姓名:王央京    学号:18050100052   学院:电子工程学院 转自:https:\/\/zhuanlan.zhihu.com\/p\/29815081 【嵌牛导读】本文介绍了DNN中的前后向传播算法 【嵌牛鼻子】DNN(深度神经网络)【嵌牛提问】对于DNN进行初步学习,需要了解的具体算法有哪些?【嵌牛正文】DNN前向传播...

逆向传播学是什么意思
逆向传播学(Backpropagation)是一种人工神经网络算法,用于训练多层前馈神经网络。其主要思想是将误差从输出层反向传递到输入层,更新每个神经元的权重和偏置。逆向传播算法是从训练数据中学习特征的一种方式,经常应用于图像识别、语音识别、自然语言处理等领域。逆向传播算法具有以下几个特点:首先,它是一...

bp算法是什么?
误差反向传播算法:BP算法的基本思想是,学习过程包括两个过程:信号前向传播和误差后向传播。(1)前向传播:输入样本->输入层->各隐层(处理)->输出层。(2)错误反向传播:输出错误(某种形式)->隐藏层(逐层)->输入层。BP算法基本介绍:多层隐含层前馈网络可以极大地提高神经网络的分类能力,但长期...

因为反向传播算法人工智能进入第二个高潮具体是在哪一年
1986年。人工智能是在1956年达特茅斯会议上首先提出的,会议确定了人工智能的目标是“实现能够像人类一样利用知识去解决问题的机器”,人工智能的第一次高潮始于上世纪50年代,在算法方面感知器数学模型被提出用于模拟人的神经元反应过程,人工智能的第二次高潮始于1986年,BP算法被提出,用于多层神经网络的...

标签传播算法是一种分类算法,还是聚类算法
标签传播是一种半监督的分类算法。流程是在图中,将有标签数据的标签向近邻传播出去,直到稳定,即所有样本的标签信息都传播的稳定不再变动了。此时所有无标签数据的标签信息得到了准确的估计。聚类是根据样本之间的相似度对数据集进行划分,而不是利用已知的标签信息进行分类。

一文搞懂梯度下降&反向传播
直到上世纪80年代,祖师爷辛顿发明了反向传播算法,用输出误差的均方差(就是loss值)一层一层递进地反馈到各层神经网络,用梯度下降法来调节每层网络的参数。至此,神经网络才得以开始它的深度之旅。本文用python自己动手实现梯度下降和反向传播算法。 请点击这里 到Github上查看源码。梯度下降法是一种将...

反向传播算法损失函数递增什么原因
损失函数(loss function)也叫代价函数(cost function),用来度量我们的模型得到的的预测值和数据真实值之间的差距,也是一个用来衡量我们训练出来的模型泛化能力好坏的重要指标。由于梯度指数是损失函数上升最快的数值,因此在反向传播算法损失函数递增。

反向传播算法 为什么 误差 那么定义
自从40年代赫布(D.O.Hebb)提出的学习规则以来,人们相继提出了各种各样的学习算法。其中以在1986年Rumelhart等提出的误差反向传播法,即BP(error BackPropagation)法影响最为广泛。直到今天,BP算法仍然是自动控制上最重要、应用最多的有效算法。是用于多层神经网络训练的著名算法,有理论依据坚实、推导过程...

hinton发明了一种计算神经网络参数的快速算法
Hinton发明了一种计算神经网络参数的快速算法 1. 简介 神经网络模型的优化一直是深度学习领域的热门话题。在过去,计算神经网络参数一直是一个耗时极大的问题。然而,Hinton发明了一种快速算法,有效地解决了这个问题,这项技术大大提高了深度神经网络的训练速度,进一步推动了深度学习的发展。2. Hinton快速...

新媒体算法传播网民生存指南是啥课
是海南大学开设的选修课。新媒体算法传播网民生存指南是海南大学开设的选修课,主要教授多媒体情况下信息传播规律相关的知识。

长顺县15848697545: 遗传算法 - 搜狗百科
通贡明目: 遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法.遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个...

长顺县15848697545: 遗传算法是什么?? -
通贡明目: 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法. 遗传算法(Genetic Algorithms简称GA)是由美国Michigan大学的John Holland教授于20世纪60年代末创建的.它来源...

长顺县15848697545: 什么叫遗传算法,遗传算法有什么用?希望通俗一点儿 -
通贡明目: 首先有个很神奇的现象:人类以及动物的进化都是朝着好的方向发展,虽然有的往坏的方向发展了,但是总体肯定是往好的方向发展.这看似不奇怪,但是我们知道,人类的基因组合是随机的,没有上帝约束.这种随机过程的结果却是一致的!...

长顺县15848697545: 请问一下能通俗的介绍一下什么是遗传算法吗? -
通贡明目: 遗传算法(Genetic Algorithms or GAs)是基于自然选择和自然遗传机制的搜索算法,它是一种有效的解决最优化问题的方法.遗传算法最早是由美国Michigan大学的John Holland和他的同事及学生提出的.类似于自然界演化的基本法则,“适...

长顺县15848697545: 遗传算法的一般算法 -
通贡明目: 遗传算法是基于生物学的,理解或编程都不太难.下面是遗传算法的一般算法: 繁殖(包括子代突变) 带有较高适应度值的那些染色体更可能产生后代(后代产生后也将发生突变).后代是父母的产物,他们由来自父母的基因结合而成,这个过程被称为“杂交”. 各个个体对环境的适应程度叫做适应度(fitness).为了体现染色体的适应能力,引入了对问题中的每一个染色体都能进行度量的函数,叫适应度函数. 这个函数是计算个体在群体中被使用的概率.

长顺县15848697545: 遗传算法的概念及其内容是什么?
通贡明目: 遗传算法终止条件当最优个体的适应度达到给定的阈值,或者最优个体的适应度和群体适应度不再上升时,或者迭代次数达到预设的代数时,算法终止

长顺县15848697545: 遗传算法原理是什么?遗传算法原理是谁提出来的?
通贡明目: 这个有隐性遗传,显性遗传的,遗传算法ga把问题的解表示成“染色体”,在算法中也即是以二进制编码的串.并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解.

长顺县15848697545: 什么是遗传算法实值变量 -
通贡明目: 1.2 遗传算法的原理 遗传算法GA把问题的解表示成“染色体”,在算法中也即是以二进制编码的串.并且,在执行遗传算法之前,给出一群“染色体”,也即是假设解.然后,把这些假设解置于问题的“环境”中,并按适者生存的原则,从中...

长顺县15848697545: 遗传咨询一般算法是怎样的?
通贡明目: 遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型.它的思想源于生物遗传学和适者生存的自然规律,是具有“生存+检测”的迭代过程的搜索算法.遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索.其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容.作为一种新的全局优化搜索算法,遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一.遗传算法是基于生物学的,理解或编程都不太难.下面是遗传算法的一般算法

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网