韩信点兵 3人一组余2 5人一组余3 7人一组余4

作者&投稿:务底 (若有异议请与网页底部的电邮联系)
韩信点兵,3个人一组.剩余2个人.7个人一组.剩4个人.12个人一组.剩余5个人.问他手下最少有多少兵~

韩信点一队士兵的人数,三人一组余两人,五人一组余三人,七人一组余四人。问:这队士兵至少有多少人?

这个题目是要求出一个正数,使之用3除余2,用5除余3,用7除余4,而且希望所求出的数尽可能地小。

如果一位同学从来没有接触过这类问题,也能利用试验加分析的办法一步一步地增加条件推出答案。

例如我们从用3除余2这个条件开始。满足这个条件的数是3n+2,其中n是非负整数。

要使3n+2还能满足用5除余3的条件,可以把n分别用1,2,3,…代入来试。当n=1时,3n+2=5,5除以5不用余3,不合题意;当n=2时,3n+2=8,8除以5正好余3,可见8这个数同时满足用3除余2和用5除余3这两个条件。

最后一个条件是用7除余4。8不满足这个条件。我们要在8的基础上得到一个数,使之同时满足三个条件。

为此,我们想到,可以使新数等于8与3和5的一个倍数的和。因为8加上3与5的任何整数倍所得之和除以3仍然余2,除以5仍然余3。于是我们让新数为8+15m,分别把m=1,2,…代进去试验。当试到m=3时,得到8+15m=53,53除以7恰好余4,因而53合乎题目要求。




秦王暗点兵问题和韩信乱点兵问题,都是后人对物不知其数问题的一种故事化。

物不知其数问题出自一千六百年前我国古代数学名著《孙子算经》。原题为:"今有物不知其数,三三数之二,五五数之三,七七数之二,问物几何?"

这道题的意思是:有一批物品,不知道有几件。如果三件三件地数,就会剩下两件;如果五件五件地数,就会剩下三件;如果七件七件地数,也会剩下两件。问:这批物品共有多少件?

变成一个纯粹的数学问题就是:有一个数,用3除余2,用5除余3,用7除余2。求这个数。

这个问题很简单:用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,所以23就是本题的一个答案。

这个问题之所以简单,是由于有被3除和被7除余数相同这个特殊性。如果没有这个特殊性,问题就不那么简单了,也更有趣得多。

我们换一个例子;韩信点一队士兵的人数,三人一组余两人,五人一组余三人,七人一组余四人。问:这队士兵至少有多少人?

这个题目是要求出一个正数,使之用3除余2,用5除余3,用7除余4,而且希望所求出的数尽可能地小。

如果一位同学从来没有接触过这类问题,也能利用试验加分析的办法一步一步地增加条件推出答案。

例如我们从用3除余2这个条件开始。满足这个条件的数是3n+2,其中n是非负整数。

要使3n+2还能满足用5除余3的条件,可以把n分别用1,2,3,…代入来试。当n=1时,3n+2=5,5除以5不用余3,不合题意;当n=2时,3n+2=8,8除以5正好余3,可见8这个数同时满足用3除余2和用5除余3这两个条件。

最后一个条件是用7除余4。8不满足这个条件。我们要在8的基础上得到一个数,使之同时满足三个条件。

为此,我们想到,可以使新数等于8与3和5的一个倍数的和。因为8加上3与5的任何整数倍所得之和除以3仍然余2,除以5仍然余3。于是我们让新数为8+15m,分别把m=1,2,…代进去试验。当试到m=3时,得到8+15m=53,53除以7恰好余4,因而53合乎题目要求。

我国古代学者早就研究过这个问题。例如我国明朝数学家程大位在他著的《算法统宗》(1593年)中就用四句很通俗的口诀暗示了此题的解法:

三人同行七十稀,

五树梅花甘一枝,

七子团圆正半月,

除百零五便得知。

"正半月"暗指15。"除百零五"的原意是,当所得的数比105大时,就105、105地往下减,使之小于105;这相当于用105去除,求出余数。

这四句口诀暗示的意思是:当除数分别是3、5、7时,用70乘以用3除的余数,用21乘以用5除的余数,用15乘以用7除的余数,然后把这三个乘积相加。加得的结果如果比105大,就除以105,所得的余数就是满足题目要求的最小正整数解。

按这四句口诀暗示的方法计算韩信点的这队士兵的人数可得:

70×2+21×3+15×4=263,

263=2×105+53,

所以,这队士兵至少有53人。

在这种方法里,我们看到:70、21、15这三个数很重要,稍加研究,可以发现它们的特点是:

70是5与7的倍数,而用3除余1;

21是3与7的倍数,而用5除余1;

15是3与5的倍数,而用7除余1。

因而

70×2是5与7的倍数,用3除余2;

21×3是3与7的倍数,用5除余3;

15×4是3与5的倍数,用7除余4。

如果一个数除以a余数为b,那么给这个数加上a的一个倍数以后再除以a,余数仍然是b。所以,把70×2、21×3与15×4都加起来所得的结果能同时满足"用3除余2、用5除余3、用7除余4"的要求。一般地,

70m+21n+15k (1≤m<3, 1≤n<5,1≤k<7)

能同时满足"用3除余m 、用5除余n 、用7除余k"的要求。除以105取余数,是为了求合乎题意的最小正整数解。

我们已经知道了70、21、15这三个数的性质和用处,那么,是怎么把它们找到的呢?要是换了一个题目,三个除数不再是3、5、7,应该怎样去求出类似的有用的数呢?

为了求出是5与7的倍数而用3除余1的数,我们看看5与7的最小公倍数是否合乎要求。5与7的最小公倍数是5×7=35,35除以3余2,35的2倍除以3余2,35的2倍除以3就能余1了,于是我们得到了"三人同行七十稀"。
为了求出是3与7的倍数而用5除余1的数,我们看看3与7的最小公倍数是否合乎要求。3与7的最小公倍数是3×7=21,21除以5恰好余1,于是我们得到了"五树梅花甘一枝"。
为了求出是3与5的倍数而用7除余1的数,我们看看3与5的最小公倍数是否合乎要求。3与5的最小公倍数是3×5=15,15除以7恰好余1,因而我们得到了"七子团圆正半月"。
3、5、7的最小公倍数是105,所以"除百零五便得知"。

例如:试求一数,使之用4除余3,用5除余2,用7除余5。
解:我们先求是5与7的倍数而用4除余1的数;5与7的最小公倍数是5×7=35,35除以4余3,3×3除以4余1,因而35×3=105除以4余1,105是5与7的倍数而用4除余1的数。
我们再求4与7的倍数而用5除余1的数;4与7的最小公倍数是4×7=28,28除以5余3,3×7除以5余1,因而28×7=196除余5余1,所以196是4与7的倍数而用5除余1的数。
最后求的是4与5的倍数而用7除余1的数:4与5的最小公倍数是4×5=20,20除以7余6,6×6除以7余1,因而20×6=120除以7余1,所以120是4与5的倍数而用7除余1的数。
利用105、196、120这三个数可以求出符合题目要求的解:
105×3+196×2+120×5=1307。
由于4、5、7的最小公倍数是4×5×7=140,1307大于140,所以1307不是合乎题目要求的最小的解。用1037除以140得到的余数是47,47是合乎题目的最小的正整数解。

一般地,
105m+196n+120k (1≤m<4,1≤n<5,1≤k<7)
是用4除余m,用5除余n,用7除余k的数(105m+196n+120k)除以140所得的余数是满足上面三个条件的最小的正数。
上面我们是为了写出105m+196n+120k这个一般表达式才求出了105这个特征数。如果只是为了解答我们这个具体的例题,由于5×7=35既是5与7的倍数除以4又余3,就不必求出105再乘以3了。
35+196×2+120×5=1027
就是符合题意的数。
1027=7×140+47,
由此也可以得出符合题意的最小正整数解47。

《算法统宗》中把在以3、5、7为除数"物不知其数"问题中起重要作用的70、21、15这几个特征数用几句口诀表达出来了,我们也可以把在以4、5、7为除数的问题中起重要作用的105、196、120这几个特征数编为口诀。留给读者自己去编吧。
凡是三个除数两两互质的情况,都可以用上面的方法求解。
上面的方法所依据的理论,在中国称之为孙子定理,国外的书籍称之为中国剩余定理。
参考资料:少年百科

中国剩余定理

民间传说着一则故事——“韩信点兵”。

秦朝末年,楚汉相争。一次,韩信将1500名将士与楚王大将李锋交战。苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是韩信整顿兵马也返回大本营。当行至一山坡,忽有后军来报,说有楚军骑兵追来。只见远方尘土飞扬,杀声震天。汉军本来已十分疲惫,这时队伍大哗。韩信兵马到坡顶,见来敌不足五百骑,便急速点兵迎敌。他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名。韩信马上向将士们宣布:我军有1073名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人。汉军本来就信服自己的统帅,这一来更相信韩信是“神仙下凡”、“神机妙算”。于是士气大振。一时间旌旗摇动,鼓声喧天,汉军步步进逼,楚军乱作一团。交战不久,楚军大败而逃。

在一千多年前的《孙子算经》中,有这样一道算术题:

“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数.

这样的问题,也有人称为“韩信点兵”.它形成了一类问题,也就是初等数论中解同余式.这类问题的有解条件和解的方法被称为“中国剩余定理”,这是由中国人首先提出的.

① 有一个数,除以3余2,除以4余1,问这个数除以12余几?

解:除以3余2的数有:

2, 5, 8, 11,14, 17, 20, 23….

它们除以12的余数是:

2,5,8,11,2,5,8,11,….

除以4余1的数有:

1, 5, 9, 13, 17, 21, 25, 29,….

它们除以12的余数是:

1, 5, 9, 1, 5, 9,….

一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5.

如果我们把①的问题改变一下,不求被12除的余数,而是求这个数.很明显,满足条件的数是很多的,它是 5+12×整数,

整数可以取0,1,2,…,无穷无尽.事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数.这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件.《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案.

②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数.

解:先列出除以3余2的数:

2, 5, 8, 11, 14, 17, 20, 23, 26,…,

再列出除以5余3的数:

3, 8, 13, 18, 23, 28,….

这两列数中,首先出现的公共数是8.3与5的最小公倍数是15.两个条件合并成一个就是8+15×整数,列出这一串数是8, 23, 38,…,再列出除以7余2的数 2, 9, 16, 23, 30,…,

就得出符合题目条件的最小数是23.

事实上,我们已把题目中三个条件合并成一个:被105除余23.

那么韩信点的兵在1000-1500之间,应该是105×10+23=1073人

秦王暗点兵问题和韩信乱点兵问题,都是后人对物不知其数问题的一种故事化。

物不知其数问题出自一千六百年前我国古代数学名著《孙子算经》。原题为:"今有物不知其数,三三数之二,五五数之三,七七数之二,问物几何?"

这道题的意思是:有一批物品,不知道有几件。如果三件三件地数,就会剩下两件;如果五件五件地数,就会剩下三件;如果七件七件地数,也会剩下两件。问:这批物品共有多少件?

变成一个纯粹的数学问题就是:有一个数,用3除余2,用5除余3,用7除余2。求这个数。

这个问题很简单:用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,所以23就是本题的一个答案。

这个问题之所以简单,是由于有被3除和被7除余数相同这个特殊性。如果没有这个特殊性,问题就不那么简单了,也更有趣得多。

我们换一个例子;韩信点一队士兵的人数,三人一组余两人,五人一组余三人,七人一组余四人。问:这队士兵至少有多少人?

这个题目是要求出一个正数,使之用3除余2,用5除余3,用7除余4,而且希望所求出的数尽可能地小。

如果一位同学从来没有接触过这类问题,也能利用试验加分析的办法一步一步地增加条件推出答案。

例如我们从用3除余2这个条件开始。满足这个条件的数是3n+2,其中n是非负整数。

要使3n+2还能满足用5除余3的条件,可以把n分别用1,2,3,…代入来试。当n=1时,3n+2=5,5除以5不用余3,不合题意;当n=2时,3n+2=8,8除以5正好余3,可见8这个数同时满足用3除余2和用5除余3这两个条件。

最后一个条件是用7除余4。8不满足这个条件。我们要在8的基础上得到一个数,使之同时满足三个条件。

为此,我们想到,可以使新数等于8与3和5的一个倍数的和。因为8加上3与5的任何整数倍所得之和除以3仍然余2,除以5仍然余3。于是我们让新数为8+15m,分别把m=1,2,…代进去试验。当试到m=3时,得到8+15m=53,53除以7恰好余4,因而53合乎题目要求。

我国古代学者早就研究过这个问题。例如我国明朝数学家程大位在他著的《算法统宗》(1593年)中就用四句很通俗的口诀暗示了此题的解法:

三人同行七十稀,

五树梅花甘一枝,

七子团圆正半月,

除百零五便得知。

"正半月"暗指15。"除百零五"的原意是,当所得的数比105大时,就105、105地往下减,使之小于105;这相当于用105去除,求出余数。

这四句口诀暗示的意思是:当除数分别是3、5、7时,用70乘以用3除的余数,用21乘以用5除的余数,用15乘以用7除的余数,然后把这三个乘积相加。加得的结果如果比105大,就除以105,所得的余数就是满足题目要求的最小正整数解。

按这四句口诀暗示的方法计算韩信点的这队士兵的人数可得:

70×2+21×3+15×4=263,

263=2×105+53,

所以,这队士兵至少有53人。

在这种方法里,我们看到:70、21、15这三个数很重要,稍加研究,可以发现它们的特点是:

70是5与7的倍数,而用3除余1;

21是3与7的倍数,而用5除余1;

15是3与5的倍数,而用7除余1。

因而

70×2是5与7的倍数,用3除余2;

21×3是3与7的倍数,用5除余3;

15×4是3与5的倍数,用7除余4。

如果一个数除以a余数为b,那么给这个数加上a的一个倍数以后再除以a,余数仍然是b。所以,把70×2、21×3与15×4都加起来所得的结果能同时满足"用3除余2、用5除余3、用7除余4"的要求。一般地,

70m+21n+15k (1≤m<3, 1≤n<5,1≤k<7)

能同时满足"用3除余m 、用5除余n 、用7除余k"的要求。除以105取余数,是为了求合乎题意的最小正整数解。

我们已经知道了70、21、15这三个数的性质和用处,那么,是怎么把它们找到的呢?要是换了一个题目,三个除数不再是3、5、7,应该怎样去求出类似的有用的数呢?

为了求出是5与7的倍数而用3除余1的数,我们看看5与7的最小公倍数是否合乎要求。5与7的最小公倍数是5×7=35,35除以3余2,35的2倍除以3余2,35的2倍除以3就能余1了,于是我们得到了"三人同行七十稀"。
为了求出是3与7的倍数而用5除余1的数,我们看看3与7的最小公倍数是否合乎要求。3与7的最小公倍数是3×7=21,21除以5恰好余1,于是我们得到了"五树梅花甘一枝"。
为了求出是3与5的倍数而用7除余1的数,我们看看3与5的最小公倍数是否合乎要求。3与5的最小公倍数是3×5=15,15除以7恰好余1,因而我们得到了"七子团圆正半月"。
3、5、7的最小公倍数是105,所以"除百零五便得知"。

例如:试求一数,使之用4除余3,用5除余2,用7除余5。
解:我们先求是5与7的倍数而用4除余1的数;5与7的最小公倍数是5×7=35,35除以4余3,3×3除以4余1,因而35×3=105除以4余1,105是5与7的倍数而用4除余1的数。
我们再求4与7的倍数而用5除余1的数;4与7的最小公倍数是4×7=28,28除以5余3,3×7除以5余1,因而28×7=196除余5余1,所以196是4与7的倍数而用5除余1的数。
最后求的是4与5的倍数而用7除余1的数:4与5的最小公倍数是4×5=20,20除以7余6,6×6除以7余1,因而20×6=120除以7余1,所以120是4与5的倍数而用7除余1的数。
利用105、196、120这三个数可以求出符合题目要求的解:
105×3+196×2+120×5=1307。
由于4、5、7的最小公倍数是4×5×7=140,1307大于140,所以1307不是合乎题目要求的最小的解。用1037除以140得到的余数是47,47是合乎题目的最小的正整数解。

一般地,
105m+196n+120k (1≤m<4,1≤n<5,1≤k<7)
是用4除余m,用5除余n,用7除余k的数(105m+196n+120k)除以140所得的余数是满足上面三个条件的最小的正数。
上面我们是为了写出105m+196n+120k这个一般表达式才求出了105这个特征数。如果只是为了解答我们这个具体的例题,由于5×7=35既是5与7的倍数除以4又余3,就不必求出105再乘以3了。
35+196×2+120×5=1027
就是符合题意的数。
1027=7×140+47,
由此也可以得出符合题意的最小正整数解47。

《算法统宗》中把在以3、5、7为除数"物不知其数"问题中起重要作用的70、21、15这几个特征数用几句口诀表达出来了,我们也可以把在以4、5、7为除数的问题中起重要作用的105、196、120这几个特征数编为口诀。留给读者自己去编吧。
凡是三个除数两两互质的情况,都可以用上面的方法求解。
上面的方法所依据的理论,在中国称之为孙子定理,国外的书籍称之为中国剩余定理。
参考资料:少年百科

韩信点兵

汉高祖刘邦曾问大将韩信:“你看我能带多少兵?”韩信斜了刘邦一眼说:“你顶多能带十万兵吧!”汉高祖心中有三分不悦,心想:你竟敢小看我!“那你呢?”韩信傲气十足地说:“我呀,当然是多多益善啰!”刘邦心中又添了三分不高兴,勉强说:“将军如此大才,我很佩服。现在,我有一个小小的问题向将军请教,凭将军的大才,答起来一定不费吹灰之力的。”韩信满不在乎地说:“可以可以。”刘邦狡黠地一笑,传令叫来一小队士兵隔墙站队,刘邦发令:“每三人站成一排。”队站好后,小队长进来报告:“最后一排只有二人。”“刘邦又传令:“每五人站成一排。”小队长报告:“最后一排只有三人。”刘邦再传令:“每七人站成一排。”小队长报告:“最后一排只有二人。”刘邦转脸问韩信:“敢问将军,这队士兵有多少人?”韩信脱口而出:“二十三人。”刘邦大惊,心中的不快已增至十分,心想:“此人本事太大,我得想法找个岔子把他杀掉,免生后患。”一面则佯装笑脸夸了几句,并问:“你是怎样算的?”韩信说:“臣幼得黄石公传授《孙子算经》,这孙子乃鬼谷子的弟子,算经中载有此题之算法,口诀是:

三人同行七十稀,

五树梅花开一枝,

七子团圆正月半,

除百零五便得知。”

刘邦出的这道题,可用现代语言这样表述:

“一个正整数,被3除时余2,被5除时余3,被7除时余2,如果这数不超过100,求这个数。”

《孙子算经》中给出这类问题的解法:“三三数之剩二,则置一百四十;五五数之剩三,置六十三;七七数之剩二,置三十;并之得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十;五五数之剩一,则置二十一;七七数之剩一,则置十五,一百六以上,以一百五减之,即得。”用现代语言说明这个解法就是:

首先找出能被5与7整除而被3除余1的数70,被3与7整除而被5除余1的数21,被3与5整除而被7除余1的数15。

所求数被3除余2,则取数70×2=140,140是被5与7整除而被3除余2的数。

所求数被5除余3,则取数21×3=63,63是被3与7整除而被5除余3的数。

所求数被7除余2,则取数15×2=30,30是被3与5整除而被7除余2的数。

又,140+63+30=233,由于63与30都能被3整除,故233与140这两数被3除的余数相同,都是余2,同理233与63这两数被5除的余数相同,都是3,233与30被7除的余数相同,都是2。所以233是满足题目要求的一个数。

而3、5、7的最小公倍数是105,故233加减105的整数倍后被3、5、7除的余数不会变,从而所得的数都能满足题目的要求。由于所求仅是一小队士兵的人数,这意味着人数不超过100,所以用233减去105的2倍得23即是所求。

这个算法在我国有许多名称,如“韩信点兵”,“鬼谷算”,“隔墙算”,“剪管术”,“神奇妙算”等等,题目与解法都载于我国古代重要的数学著作《孙子算经》中。一般认为这是三国或晋时的著作,比刘邦生活的年代要晚近五百年,算法口诀诗则载于明朝程大位的《算法统宗》,诗中数字隐含的口诀前面已经解释了。宋朝的数学家秦九韶把这个问题推广,并把解法称之为“大衍求一术”,这个解法传到西方后,被称为“孙子定理”或“中国剩余定理”。而韩信,则终于被刘邦的妻子吕后诛杀于未央宫。

请你试一试,用刚才的方法解下面这题:

一个数在200与400之间,它被3除余2,被7除余3,被8除余5,求该数。

(解:112×2+120×3+105×5+168k,取k=-5得该数为269。)

所求数除以7余4的数有:4,11,18,25,……
除以5余3的数个位必须为3或8。
这个数可以是:18,53,88,……
18/3余0 53/3正好余2
所以士兵至少有53人。


长春市19221886183: 韩信点兵问题:3人一排余2,5人一排余3,7人一排余2.算出1073人,怎样算的?急用!用方程思想 -
尾媚卡维:[答案] 首先找出能被5与7整除而被3除余1的数70,被3与7整除而被5除余1的数21,被3与5整除而被7除余1的数15. 所求数被3除余2,则取数70*2=140,140是被5与7整除而被3除余2的数. 所求数被5除余3,则取数21*3=63,63是被3与7整除而被5除余3的数. ...

长春市19221886183: 韩信点一队士兵的人数,三人一组余两人,五人一组余三人,七人一组余四人.问:这队士兵至少有()人. -
尾媚卡维:[选项] A. 8 B. 11 C. 38 D. 53

长春市19221886183: 古代有这样一个数学问题:韩信点一队士兵人数,三人一组余两人,五人一组余三人,七人一组余四人.问这队士兵至少多少人?我国古代学者早就研究过这个... -
尾媚卡维:[答案]53;

长春市19221886183: 韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人…... -
尾媚卡维:[答案] 加三是因为最后剩余3人…… 假设兵不满一万是一个先决条件,如果没有这个条件,那么兵的数目是5*9*13*17*2+3=19893也可以满足“每5人一列、9人一列、13人一列、17人一列都剩3人”.

长春市19221886183: 韩信点兵算法相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人、17人一列余2人、... -
尾媚卡维:[答案] 参考:blog.163.com/get_lose/blog/static/10008014920136254339773

长春市19221886183: 韩信点兵,3个人一组.剩余2个人.7个人一组.剩5个人.12个人一组.剩余11个人.问他手下最少有多少兵 -
尾媚卡维:[答案] 最少有47人

长春市19221886183: 韩信点兵 他对刘邦说军中人数每三人一列余一人五人一列余二人七人一列余四人十三人一列余六人共有多少人哪教教怎么算的三人通行七十稀,五树梅花二... -
尾媚卡维:[答案] 这是典型的中国剩余定理(又称孙子定理)的题目,解法如下: 设一共有X人.则X≡1(mod3),X≡2(mod5),X≡4(mod7),X≡6(mod13) 则:X≡1*455*2+2*273*2+4*195*6+6*105*1(mod1365) X≡7312(mod1365) X≡ 487(mod1365) 所以军中至少有487人,所...

长春市19221886183: 韩信点兵又称中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信说,每三人一列余一人,五人一列余二人,七人一列余四人,十三人一列余... -
尾媚卡维:[答案] 487再加上任意1365的整倍数 即 487 或487+1365=1852 、487+1365*2 、487+1365*3 千人以下:487人. 2000人以下:1852人. 超过3000人至少有:3217人.

长春市19221886183: 韩信点兵每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人…….就要这个题的做法 通俗易懂的 头疼. -
尾媚卡维:[答案] 从6开始,每次加13,到32是除以7余4,正好也除以5余2,然后每次加5*7*13=455,487除以3余1 ╮(╯_╰)╭ :-D :-D :-D.

长春市19221886183: 急求数学题(韩信点兵)韩信是秦朝末年汗王刘邦的一员大将.有一次韩信带领1500名士兵打仗,有四五百人死伤.战后韩信把队伍进行整理:命令士兵3人站... -
尾媚卡维:[答案] 三人同行七十稀, 五树梅花廿一枝, 七子团圆正月半, 除百零五便得知. 2*70+3*21+2+15=233 233+105*8=1073

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网