圆周率是怎么算的?

作者&投稿:陶颖 (若有异议请与网页底部的电邮联系)
圆周率是怎样算出来的?~

我们日常常用的圆周率π,你知道是怎么来的吗?你知道3月14日在国际上是什么日子吗?今天吕老师带大家一探究竟。

我们日常常用的圆周率π,你知道是怎么来的吗?你知道3月14日在国际上是什么日子吗?今天吕老师带大家一探究竟。

圆周率(π)是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。   π(读作“派”)是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表示圆周率了。但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。π=Pai(π=Pi)古希腊欧几里德《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取pi=(4/3)^4≒3.1604 。第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。    圆周率
中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形,得出π≈根号10   (约为3.16)。   南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。   阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。   德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。   无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,π值计算精度也迅速增加。1706年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。    小学六年级关于圆周率的课本
电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数,创下最新的纪录。2010年1月7日——法国一工程师将圆周率算到小数点后27000亿位。2010年8月30日——日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后5万亿位。   2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。今年56岁近藤茂使用的是自己组装的计算机,从去年10月起开始计算,花费约一年时间刷新了纪录。
编辑本段发展历程
  在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of 圆周率
Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。
亚洲
  中国,最初在《周髀算经》中就有“径一周三”的记载,取π值为3。   魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即“割圆术”),求得π的近似值3.1416。    圆周率
汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。   公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小于八亿分之一。这个纪录在一千年后才给打破。   印度,约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。   婆罗门笈多采用另一套方法,推论出圆周率等于10的算术平方根。
欧洲
  斐波那契算出圆周率约为3.1418。   韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537   他还是第一个以无限乘积叙述圆周率的人。   鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。   华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......   欧拉发现的e的iπ次方加1等于0,成为证明π是超越数的重要依据。   之后,不断有人给出反正切公式或无穷级数来计算π,在这里就不多说了。
编辑本段π与电脑的关系
   圆周率
在1949年,美国制造的世上首部电脑-ENIAC(Electronic Numerical Interator and Computer)在亚伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等于平均两分钟算出一位数。五年后,NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随着美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和M. Bouyer发现了π的第一百万个小数位。   在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收敛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。之后,不断有人以高速电脑结合类似萨拉明的算则来计算π的值。目前为止,π的值己被算至小数点后   兆万千百十亿千百十万千百十个 (US)   亿亿亿亿 万万万 (美国)   60000000000001 (IBM蓝色基因)    个位。
为什么要继续计算π
  其实,即使是要求最高、最准确的计算,也用不着这么多的小数位,那么,为什么人们还要不断地努力去计算圆周率呢?   第一,用这个方法就可以测试出电脑的毛病。如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,科技也能得到进步,从而改善人类的生活。就连微积分、高等三角恒等式,也是由研究圆周率的推动,从而发展出来的。   第二,数学家把π算的那么长,是想研究π的小数是否有规律。   比如,π值从第700100位小数起,连续出现7个3,即3333333,从第3204765位开始,又连续出现7个3。
请采纳,谢谢!

3.14159265358979323846264338327950488
π=4∑(k=0,..∞)(-1)^k/(2k+1)
圆周率即圆的周长与其直径之间的比率。关于它的计算问题,历来是中外数学家极感兴趣、孜孜以求的问题。德国的一位数学家曾经说过:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展的一个标志。”我国古代在圆周率的计算方面长期领先于世界水平,这应当归功于魏晋时期数学家刘徽所创立的新方法——“割圆术”。
所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。
中国古代从先秦时期开始,一直是取“周三径一”(即 )的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长(参见图1-5-1),其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手(参见图1-5-2)得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。
在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。(参见图1-5-3)。这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。
按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率 为3.14和 3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。
以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于求得了圆周率为:精确到了小数点以后的第七位。在西方,这个成绩是由法国数学家韦达于1593年取得的, 比祖冲之要晚了一千一百多年。祖冲之还求得了圆周率的两个分数值,一个是“约率” ,另一个是“密率”.,其中 这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一百年。刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。

圆周率是圆的周长与直径的比值



o是3厘米求d


圆周率到底是什么意思?有什么用途?
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。通常用来计算圆的周长和面积。圆周率是一个无理数,即无限不循环小数,约等于3.141592654。把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以...

圆周率是如何计算导出的? 已知两角之比为7:3,它们的差为72度,求这两...
126度和54度。7-3=4 72\/4=18 18*7=126 18*3=54.至于圆周率,传统的计算方法是在圆里面作正多边形,这个正多边形的边数越多时,正多边形的面积就越接近圆的面积。用这个正多边形的面积除以圆的直径,就得到一个近似的圆周率。想得到越精确的圆周率,就要作越多边的正多边形。

圆周率是怎么得来的?
圆周率是平面上圆的周长与直径之比,用符号π表示,通常情况下π约等于3.14。自古以来,圆周率就引起了人们的关注。在中国,圆周率被称为圆率、周率或周。中国古代数学家在《周髀算经》中提出了“径一而周三”的观点,认为圆周率是一个常数。古希腊数学家欧几里得在《几何原本》中提到了圆周率的概念。

祖冲之是怎样计算圆周率的?
故事:一天早上,祖冲之正在家中读书,读的就是那刘徽做了注的《九章算术》,看到“割圆术”处,心想:将那正多边形的边数算到96个并不算多,多边形的周长与圆周长相差还甚远,为何不再多算一些。正多边形的边长愈多,多边形的周长不就更接近圆周长了吗?那算出的周率不就更精确了吗?想着想着,...

圆周率怎么算?
3世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法。他从圆内接正六边形开始割圆,“割之弥细,所失弥少,割之又割,以至不可割,则与圆周合体,而无所失矣。”也就是说将圆内接正多边形的边数...

求圆周率的计算方法!要解题思路!
这种论证“合径率一而弧周率三也”,即后来常说的“周三径一”,当然不严密.他认为,圆内接正多边形的面积与圆面积都有一个差,用有限次数的分割、拼补,是无法证明《九章算术》的圆面积公式的.因此刘徽大胆地将极限思想和无穷小分割引入了数学证明.他从圆内接正六边形开始割圆,“割之弥细,所失弥少,割之又割,以至...

圆的周率怎么计算?
圆周率数值如下:3.141592653589793238462643383279502884197169399375105820974944 59230781640628620899 86280 34825 34211 7067982148 08651 32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 84102 70193 85211 05559 64462 29489 54930 3819644288 10975 66593 34461 28475 64823 37867 83165 27120 19091 ...

3.14【圆周率简介】
最常见的是将其近似为3.14,有时也会使用3.1416或者3.14159这样的小数表示。在中国古代,这个数学概念被赋予了不同的名称,如圆率、周率和周,尽管名称多样,但核心概念都是描述圆的几何特性。然而,在实际应用中,我们通常采纳3.14这个简便的近似值,以方便进行各种计算和测量。

关于圆周率的小知识50字
中国古代有圆率、周率、周等名称。(在一般计算时π人们都把π这无限不循环小数化成3.14) 编辑本段【圆周率的历史】 古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似...

正长方形周率
正长方形周率:4sinπ\/4。圆周率是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比,是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正数x。圆周率用希腊字母π(读...

耀州区15790495890: 圆周率是怎么算出来的?
爨清益心: 圆周率是一个圆的周长与直径的比值,可用圆的周长除以直径计算圆周率.圆周率一般用希腊字母π表示.π=圆周长/直径≈内接正多边形/直径.当正多边形的边长越多时,...

耀州区15790495890: 圆周率是怎么算出来的?说说方法? -
爨清益心:[答案] 圆周率Pi是周长与直径的比值 算法是用正多边形的周长除以最长的对角线,当正多边形的边数趋向于无穷大时,正多边形就是一个圆了,所以边数越多,越接近正确的pi值.

耀州区15790495890: 圆周率是怎么计算的的呢 -
爨清益心:[答案] 最直接的,就是祖冲之使用的割圆术. 将一个圆分割成许多许多的内接多边形和外切多边形,然后测量内接多边形的边长,计算其周长;测量外切多边形的边长,计算其周长;两个周长的算术平均值,作为圆的周长,从而计算得出圆周率. 多边形分割...

耀州区15790495890: 圆周率的计算方法是什么?有多少种计算方法? -
爨清益心: 圆周率的计算方法很多,经典的如下: 1.古人计算圆周率,一般是用割圆法.即用圆的内接或外切正多边形来逼近圆的周长.2.Archimedes用正96边形得到圆周率小数点后3位的精度; 3.刘徽用正3072边形得到5位精度; 4.Ludolph Van Ceulen用正262边形得到了35位精度. 圆周率的计算方式的种类无法计量,还有很多其他公式和由这些经典公式衍生出来的公式,就不一一列举了.

耀州区15790495890: 圆周率是如何计算出的 -
爨清益心:[答案] 作一个比较大的圆 再作内切边长尽可能小的多边形 让多边形的轮廓接近圆 然后算出周长 再除以直径 就能算出圆周率了

耀州区15790495890: 圆周率π到底是怎么算出来的,千万别说周长除以直径 -
爨清益心: 圆周率是通过割圆术得出,周长除以直径得出的值是无理数(无限不循环小数),周长我们取的是近似数,真正的周长是无理数,这个真正的周长除以直径不能说是分数了,应叫无理数.

耀州区15790495890: 圆周率是怎样算出来的? -
爨清益心:[答案] 1.最原始的方法:割圆术 2.现代分析方法:反三角函数级数,可参考 “梅钦类公式” 3.直径计算第n位数字的算法:贝利-波尔温-普劳夫公式,BBP算法

耀州区15790495890: 圆周率是怎么发现并计算出来的? -
爨清益心:[答案] 圆周率是一个常数(约等于3.1415926),是代表圆周长和直径的比例.它是一个无理数,即是一个无限不循环小数.但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20...

耀州区15790495890: 圆周率是怎样计算出来的? -
爨清益心:[答案] 圆周率的计算方法 古人计算圆周率,一般是用割圆法.即用圆的内接或外切正多边形来逼近圆的周长.Archimedes用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen用正262边形得到了35位精度.这种基...

耀州区15790495890: 圆周率是如何计算导出的? -
爨清益心: 圆的周长除以它的直径得出圆周率

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网