数学史上的三大危机是什么?

作者&投稿:仪兴 (若有异议请与网页底部的电邮联系)
数学史上的三大危机~

什么是“罗素悖论”?史上三次重大数学危机,你又了解多少?

无理数的发现——第一次数学危机
简单的说就是古时代的人把数字与实际世界中的距离概念对应起来,有人认为任何距离都可以表述为M/N,M,N均为整数,毕竟无限循环小数都可以写成这样的分数形式,所以很多人对这一概念抱有信心。直到后来有人发现边长为1的正方形的对角线长度不能用这样的数来描述,大家对这一现象感觉很奇妙,导致了对数的概念的反思。

无穷小是零吗——第二次数学危机
早期的微积分创造者如牛顿喜欢在他的作品中把速度写成类似v=limt->0 (x/t)的形式,由于牛顿当时没有给出这个lim t->0的较好的定义,所以受到了很多怀疑,如一个当时富有知识的主教就指责其中概念不清。

悖论的产生---第三次数学危机
假如一个理发师说:“我给村里不给自己理发的人理发”。
仔细思考一下这个句子,是不是很有意思呢?
由于当时的数学基础使用最基础的概念是集合。这句话使用集合论表述存在许多问题,后来就展开了逻辑以及数学基础的大讨论。

数学的发展史中,并不是那么一帆风顺的,其中历史上曾发生过三大危机,危机的发生促使了数学本生的发展,因此我们应该辨证地看待这三大危机。

第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。
最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。
我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的 , 都无法用 来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。

第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢?
直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了 极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。
而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说 ,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到 等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。

第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。
我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。那么理发师该不该给自己理发呢?还有大家熟悉的“说谎者悖论”,其大体内容是:一个克里特人说:“所有克里特人说的每一句话都是谎话。”试问这句话是真还是假?从数学上来说,这就是罗素悖论的一个具体例子。
罗素在该悖论中所定义的集合R,被几乎所有集合论研究者都认为是在朴素集合论中可以合法存在的集合。事实虽是这样但原因却又是什么呢?这是由于R是集合,若R含有自身作为元素,就有R R,那么从集合的角度就有R R。一个集合真包含它自己,这样的集合显然是不存在的。因为既要R有异于R的元素,又要R与R是相同的,这显然是不可能的。因此,任何集合都必须遵循R R的基本原则, 否则就是不合法的集合。这样看来,罗素悖论中所定义的一切R R的集合,就应该是一切合法集合的集合,也就是所有集合的集合,这就是同类事物包含所有的同类事物,必会引出最大的这类事物。归根结底,R也就是包含一切集合的“最大的集合”了。因此可以明确了,实质上,罗素悖论就是一个以否定形式陈述的最大集合悖论。
从此,数学家们就开始为这场危机寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统(即所谓ZF公理系统),这场数学危机到此缓和下来。
现在,我们通过离散数学的学习,知道集合论主要分为Cantor集合论和Axiomatic集合论,集合是先定义了全集I,空集 ,在经过一系列一元和二元运算而得来得。而在七条公理上建立起来的集合论系统避开了罗素悖论,使现代数学得以发展。

911
圣贤论数学史上的三次危机

数学常常被人们认为是自然科学中发展得最完善的一门学科,但在数学的发展史中,却经历了三次危机,人们为了使数学向前发展,从而引入一些新的东西使问题化解,在第一次危机中导致无理数的产生;第二次危机发生在十七世纪微积分诞生后,无穷小量的刻画问题,最后是柯西解决了这个问题;第三次危机发生在19世纪末,罗素悖论的产生引起数学界的轩然大波,最后是将集合论建立在一组公理之上,以回避悖论来缓解数学危机。 第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。
最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。
我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的 , 都无法用 来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。

第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢?
直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了 极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。
而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说 ,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到 等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。

第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。
我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。那么理发师该不该给自己理发呢?还有大家熟悉的“说谎者悖论”,其大体内容是:一个克里特人说:“所有克里特人

无理数危机,无穷小数危机,悖论危机


数学三大危机的数学三大危机
这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。 十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与...

简答历史上的三次数学危机产生的根源与解决
论数学史上的三次数学危机 学号:100521026 姓名:付东群 摘要:数学发展从来不是完全直线,而是常常出现悖论。历史上一连串的数学 悖论动摇了人们对数学的可靠性的信仰,数学史上曾经发生了三次数学危机。数 学悖论的产生和危机的出现, 不单给数学带来麻烦和失望,更重要的是给数学的 发展带来新的生机和希望,促进了数学...

历史上的数学危机
1918年,罗素把这个悖论通俗化,成为理发师悖论。罗素悖论的发现,无异于晴天劈雳,把人们从美梦中惊醒。罗素悖论以及集合论中其它一些悖论,深入到集合论的理论基础之中,从而从根本上危及了整个数学体系的确定性和严密性。于是在数学和逻辑学界引起了一场轩然大波,形成了数学史上的第三次危机。产生集合...

第三次数学危机是什么?
整个数学发展史一共诞生了三次数学史,可谓是环环相扣,毕达哥拉斯学派的希帕索斯发现了无理数,直接对一切数均可表成整数或整数之比的思想观念造成了冲击,在长达 2000 年的时间里,数学家都刻意回避无理数存在的事实。 而牛顿在创造微积分的时候,则引发了第二次数学危机,牛顿对于导数的定义并不太严密,比如说 x...

历史上有没有哪些数学学科的基础最后被证伪了的?
当然,上面例子还不够典型,真正数学能勉强撑得上崩塌的是三件事,也就是三大数学危机:万物皆数---结果发现面积为1的正方形对角线是无理数。倒下了毕氏哲学,但是崛起了几何学,渐渐,简单的算术和几何学开始分家 阿基里斯追不上乌龟---一个跑得飞快的人却追不上乌龟,你说怪不怪?不符合事实啊...

科学弊大的事例
无独有偶.科技发展带来的弊端二:随着科学技术水平的发展和人民生活水平的提高,环境污染也在增加,特别是在发展中国家,环境污染问题越来越成为世界各个国家的共同课题之一.由于人们对工业高度发达的负面影响预料不够预防不利,导致了全球性的三大危机:资源短缺、环境污染、生态破坏. …… 综合上述,科技发展的弊端已经深深...

转折点:用更大的格局去面对未来时代巨变
上述关于认知颠覆的故事只是人类历史进程中的一个小小的“转折点”,无论是经济学,还是其它的领域,都会存在这样的转折点。 例如数学史上的“三大危机”,物理学史上的“两朵乌云”,进化论对神权统治的冲击,也包括与民生息息相关的教育、医疗、住房等话题,都有在认知、环境、行为等多个层面上的转变。 那么,该如何...

贝克莱的谬误在哪里
如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展等等。 以上简单介绍了数学史上由于数学悖论而导致的三次数学危机与度过,从中我们不难看到数学悖论在推动数学发展中的巨大作用。有人说:“提出问题就是解决问题的一半”,而数学悖论提出的正是让数学家无法回避的问题...

地球面临的三大困难危机
食品:约六分之一的人类遭遇饥饿和营养不良,而耕种更多粮食的努力进一步破坏了土地的生产力.·水源:到2025年,地球三分之二的人口极可能生活在水源紧缺的地区.·能源:2010年石油的产量达到高峰并进入下降的趋势.·气候变化:被英国首相布莱尔(专题,图库)形容为世界最严重的环境挑战.包括不断增多的风暴、...

汉武帝“盛世”三大危机?盛世之下隐藏着哪些问题?
汉武帝是中国历史上著名的皇帝。他为一个民族树立了前所未有的尊严,给了一个民族长久屹立的信心,他的称号成为了一个民族永恒的名字。汉武帝依靠四代祖先积累的雄厚国力,扩大疆域,彻底解决匈奴问题,将汉朝推向发展的巅峰。然而在汉武帝的“盛世”下,却出现了三大危机。第一,土地危机。汉武帝是全国最大的地主,他在...

上街区15643789473: 数学历史上的三次危机是什么? -
乌股盐酸: 第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派.这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖.当时人们对有理数的认识还很有限,对于无理数...

上街区15643789473: 数学史上的危机是什么? -
乌股盐酸:[答案] 温馨提示 数学的发展史中,并不是那么一帆风顺的,其中历史上曾发生过三大危机,危机的发生促使了数学本生的发展:第一次危机发生在公元前580~568年之间的古希腊;第二次数学危机发生在十七世纪.第三次数学危机

上街区15643789473: 什么是数学发展史上的三次危机 -
乌股盐酸:[答案] 数学发展史上的三次危机无理数的发现---第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论.当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中...

上街区15643789473: 数学经历过几次危机,分别是什么~ -
乌股盐酸:[答案] 数学史上的三次危机 无 理 数 的 发 现 —— 第 一 次 数 学 危 机 大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论.当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和...

上街区15643789473: 数学三大危机是什么. -
乌股盐酸: 第一,希伯斯(Hippasu,米太旁登地方人,公元前5世纪)发现了一个腰为1的等腰直角三角形的斜边(即根号2)永远无法用最简整数比(不可公度比)来表示,从而发现了第一个无理数,推翻了毕达哥拉斯的著名理论.相传当时毕达哥拉斯...

上街区15643789473: 三次数学危机分别是哪三次? -
乌股盐酸: 简单来说: 第一次数学危机:无理数的发现. 第二次数学危机:十七、十八世纪关于微积分发生的激烈的争论. 第三次数学危机:康托的一般集合理论的边缘发现悖论. 补充: 专业术语 表达: 第一次数学危机:不可通约性的发现. 第二次数学危机 : 无穷小量 是否存在. 第三次数学危机 : 罗素悖论 .

上街区15643789473: 数学史上有几次危机? -
乌股盐酸:[答案] 数学史上的三次危机无 理 数 的 发 现 —— 第 一 次 数 学 危 机 大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论.当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺"...

上街区15643789473: 数学史上的三次危机 -
乌股盐酸: 数学的发展史中,并不是那么一帆风顺的,其中历史上曾发生过三大危机,危机的发生促使了数学本生的发展,因此我们应该辨证地看待这三大危机.第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派...

上街区15643789473: 什么是数学的第三次危机?能具体点吗? -
乌股盐酸:[答案] 【数学的第三次危机】 在科学技术中,当一种反常现象与通常理论发生冲突时,就会出现理论方面的危机.在数学发展史上,已经经历了三次危机: 公元前5世纪,由于古希腊毕达哥拉斯学派的希帕索斯发现了无理数而与该学派所信奉的"一切数皆...

上街区15643789473: 简述数学史上的三次数学危机及其对数学发展的影响 -
乌股盐酸:[答案] 数学悖论与三次数学危机 陈基耿 摘要:数学发展从来不是完全直线式的,而是常常出现悖论.历史上一连串的 数学悖论动摇了人们对数学可靠性的信仰,数学史上曾经发生了三次数学危机.数学悖论的产生和危机的出现,不单给数学带来麻烦和失望,...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网