什么是纳米生物复合材料?

作者&投稿:曾姿 (若有异议请与网页底部的电邮联系)
什么是纳米生物陶瓷材料?~

纳米陶瓷是20世纪80年代中期发展起来的先进材料,是由纳米级水平显微结构组成的新型陶瓷材料,它的晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸等都只限于100nm量级的水平。纳米结构所具有的小尺寸效应、表面与界面效应使纳米陶瓷呈现出与传统陶瓷显著不同的独特性能。纳米陶瓷已成为当前材料科学、凝聚态物理研究的前沿热点领域,是纳米科学技术的重要组成部分。


生物陶瓷作为一种生物医用材料,无毒副作用,与生物组织具有良好的相容性和耐腐蚀性,备受人们的青睐,在临床上已有广泛的应用,用于制造人工骨、骨钉、人工齿、牙种植体、骨髓内钉等。目前,生物陶瓷材料的研究已从短期的替代与填充发展成为永久性牢固种植,从生物惰性材料发展到生物活性材料。但是由于常规陶瓷材料中气孔、缺陷的影响,该材料低温性能较差,弹性模量远高于人骨,力学性能不匹配,易发生断裂破坏,强度和韧性都不能满足临床上的要求,致使其应用受到很大的限制。


纳米材料的问世,使生物陶瓷材料的生物学性能和力学性能大大提高成为可能。与常规陶瓷材料相比,纳米陶瓷中的内在气孔或缺陷尺寸大大减小,材料不易造成穿晶断裂,有利于提高固体材料的断裂韧性。而晶粒的细化又使晶界数量大大增加,有助于晶界间的滑移,使纳米陶瓷材料表现出独特的超塑性。一些材料科学家指出,纳米陶瓷是解决陶瓷脆性的战略途径。同时,纳米材料固有的表面效应使其表面原子存在许多悬空键,并且有不饱和性质,具有很高的化学活性。这一特性可以增加该材料的生物活性和成骨诱导能力,实现植入材料在体内早期固定的目的。


美国的科学家研究了纳米固体氧化铝和纳米固体磷灰石材料与常规的氧化铝和磷灰石固体材料在体外模拟实验中的差异,结果发现,纳米固体材料具有更强的细胞吸附和繁殖能力。他们猜测这可能是由于以下原因。


(1)纳米固体材料在模拟环境中更易于降解。


(2)晶粒和孔洞尺寸的减小改变了材料的表面粗糙度,增强了类成骨细胞的功能。


(3)纳米固体材料的表面亲水性更强,细胞更易于在其上吸附。


此外,人们还利用纳米微粒颗粒小,比表面积大并有高的扩散速率的特点,将纳米陶瓷粉体加入某些已被提出的生物陶瓷材料中,以便提高此类材料的致密度和韧性,用做骨替代材料,如用纳米氧化铝增韧氧化铝陶瓷,用纳米氧化锆增韧氧化锆陶瓷等,已取得了一定的进展。


我国四川大学的科学家将纳米类骨磷灰石晶体与聚酰胺高分子制成复合体,并将纳米晶体含量调节到与人骨所含的纳米晶体比例相同,研制成功纳米人工骨。这种纳米人工骨是一种高强柔韧的复合仿生生物活性材料。由于这种复合材料具有优异的生物相容性、力学相容性和生物活性,用它制成的纳米人工骨不但能与自然骨形成生物键合,而且易与人体肌肉和血管牢牢长在一起。并可以诱导软骨的生成,各种特性几乎与人骨特性相当。另外他们还构思将纳米固体陶瓷材料制造成人工眼球的外壳,使这种人工眼球不仅可以像真眼睛一样同步移动,也可以通过电脉冲刺激大脑神经,看到精彩世界;理想中的纳米生物陶瓷眼球可与眶肌组织达到很好的融合,并可以实现同步移动。


在无机非金属材料中,磁性纳米材料最为引入注目,已成为目前新兴生物材料领域的研究热点。特别是磁性纳米颗粒表现出良好的表面效应,比表面激增,官能团密度和选择吸附能力变大,携带药物或基因的百分数量增加。在物理和生物学意义上,顺磁性或超顺磁性的纳米铁氧体纳米颗粒在外加磁场的作用下,温度上升至40~45℃,可达到杀死肿瘤的目的。


德国学者报道了含有75%~80%铁氧化物的超顺磁多糖纳米粒子(200~400nm)的合成和物理化学性质。将它与纳米尺寸的SiO2相互作用,提高了颗粒基体的强度,并进行了纳米磁性颗粒在分子生物学中的应用研究,试验了具有一定比表面的葡萄糖和二氧化硅增强的纳米粒子。在卞列方面与工业上可获得的人造磁珠做了比较:DNA自动提纯、蛋白质检测、分离和提纯、生物物料中逆转录病毒检测、内毒素消除和磁性细胞分离等。例如在DNA自动提纯中,用浓度为25mg/mL的葡聚糖纳米磁粒和SiO2增强的纳米粒子悬浊液,达到了>300ng/μL的DNA型1-2KD的非专门DNA键合能力。SiO2增强的葡聚糖纳米粒子的应用使背景信号大大减弱。此外,还可以将磁性纳米粒子表面涂覆高分子材科后与蛋白质结合,作为药物载体注入到人体内,在外加磁场2125×103/π(A/m)作用下,通过纳米磁性粒子的磁性导向性,使其向病变部位移动,从而达到定向治疗的目的:例如10~50nm的Fe3O4磁性粒子表面包裹甲基丙烯酸,尺寸约为200nm,这种亚微米级的粒子携带蛋白、抗体和药物可以用于癌症的诊断和治疗。这种局部治疗效果好,副作用少。一前途无量的纳米技术。


另外根据TiO2纳米微粒在光照条件下具有高氧化还原能力而能分解组成微生物的蛋白质,科学家们进一步将TiO2纳米微粒用于癌细胞治疗,研究结果表明,紫外光照射10min后,TiO2纳米微粒能杀灭全部癌细胞。


其他方面的应用还有一些例子。


20世纪80年代初,人们开始利用纳米微粒进行细胞分离,建立了用纳米SiO2微粒实现细胞分离的新技术。其基本原理和过程是:先制备SiO2纳米微粒,尺寸大小控制在15~20nm。结构一般为非晶态,再将其表面包覆单分子层。包覆层的选择主要依据所要分离的细胞种类而定,一般选择与所要分离细胞有亲和作用的物质作为附着层。这种SiO2纳米粒子包覆后所形成复合体的尺寸约为30nm;第二步是制取含有多种细胞的聚乙烯吡咯烷酮胶体溶液,适当控制胶体溶液浓度;第三步是将纳米SiO2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,再通过离心技术,利用密度梯度原理,使所需要的细胞很快分离出来。此方法的优点是:①易形成密度梯度;②易实现纳米SiO2粒子与细胞的分离。这是因为纳米SiO2微粒是属于无机玻璃的范畴,性能稳定,一般不与胶体溶液和生物溶液反应,既不会玷污生物细胞,也容易把它们分开。


利用不同抗体对细胞内各种器官和骨骼组织的敏感程度和亲和力的显著差异,选择抗体种类,将纳米金粒子与预先精制的抗体或单克隆抗体混合,制备成多种纳米金-抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10nm的金粒子在光学显微镜下呈红色),从而给各种组合“贴上”了不同颜色的标签,因而为提高细胞内组织的分辨率提供了一种急需的染色技术。


生物材料应用于人体后,其周围组织有伴生感染的危险,这将导致材料的失效和手术的失败,给患者带来巨大的痛苦。为此,人们开发出一些兼具抗菌性的纳米生物材料。如在合成羟基磷灰石纳米粉的反应中,将银、铜等可溶性盐的水溶液加入反应物中,使抗菌金属离子进入磷灰石结晶产物中,制得抗菌磷灰石微粉,用于骨缺损的填充和其他方面。


目前已发现多种具有杀菌或抗病毒功能的纳米材料。二氧化钛是一种光催化剂,普通TiO2在有紫外光照射时才有催化作用,但当其粒径在几十纳米时,只要有可见光照射就有极强的催化作用。研究表明在其表面会产生自由基离子破坏细菌中的蛋白质,从而把细菌杀死,并同时降解由细菌释放出的有毒复合物。实践中可通过向产品整体或部件中添加纳米TiO2,再用另一种物质将其固定化,在一定的温度下自由基离子会缓慢释放,从而使产品具有杀菌或抗菌功能。例如用TiO2处理过的毛巾,只要有可见光照射,毛巾上的细菌就会被纳米TiO2释放出的自由基离子杀死。TiO2光催化剂适合于直接安放于医院病房、手术室及生活空间等细菌密集场所。


经过近几年的发展,纳米生物陶瓷材料研究已取得了可喜的成绩,但从整体来分析,此领域尚处于起步阶段,许多基础理论和实践应用还有待于进一步研究。如纳米生物陶瓷材料制备技术的研究——如何降低成本使其成为一种平民化的医用材料;新型纳米生物陶瓷材料的开发和利用;如何尽快使功能性纳米生物陶瓷材料从展望变为现实,从实验室走向临床;大力推进分子纳米技术的发展,早日实现在分子水平上构建器械和装置,用于维护人体健康等,这些工作还有待于材料工作者和医学工作者的竭诚合作和共同努力才能够实现。

从材料学角度来看,生物体及其多数组织均可视为由各种基质材料构成的复合材料。具体来看,生物体内以无机-有机纳米生物复合材料最为常见,如骨骼、牙齿等就是由羟基磷灰石纳米晶体和有机高分子基质等构成的纳米生物复合材料。人们通过仿生矿化方法制备纳米生物复合材料,获得了优于常规材料的力学性能。

从材料学角度来看,生物体及其多数组织均可视为由各种基质材料构成的复合材料。具体来看,生物体内以无机-有机纳米生物复合材料最为常见,如骨骼、牙齿等就是由羟基磷灰石纳米晶体和有机高分子基质等构成的纳米生物复合材料。人们通过仿生矿化方法制备纳米生物复合材料,获得了优于常规材料的力学性能。

按照生物矿化过程原理,美国科学家找到了一种两亲性肽分子,该两亲分子一端为亲水的精氨酸-甘氨酸-天冬氨酸(RGD),另一端含有磷酰化的氨基酸残基,亲水的RGD序列有利于材料与细胞的粘连,而磷酰化的氨基酸残基可与钙离子相互作用。此两亲性肽分子能组装成纳米纤维以期促进生物矿化,使之成为模板指导羟基磷灰石(HA)结晶生长。此两亲分子纳米纤维溶液可形成类似于骨的胶原纤维基质的凝胶,因此可将疑胶注射至骨缺损处作为生成新骨组织的基质。研究表明将凝胶置于含酸和磷酸盐离子的溶液中,20min后体系仿生矿化,HA结晶沿纤维生长,转变成羟基磷灰石-肽复合材料,该纳米生物复合材料坚硬如真骨。

清华大学研究开发的纳米级羟基磷灰石-胶原复合物在组成上模仿了天然骨基质中无机和有机成分,其纳米级的做结构类似于天然骨基质。多孔的纳米羟基磷灰石-胶原复合物形成的三维支架为成骨细胞提供了与体内相似的微环境。细胞在该支架上能很好地生长并能分泌骨基质。体外及动物实验表明,此种羟基磷灰石-胶原复合物是良好的竹修复纳米生物材料。






纳米复合材料有哪几种类型如何进行稳定化设计
纳米复合材料也可以是指分散相尺寸有一维小于100nm的复合材料,分散相的组成可以是无机化合物,也可以是有机化合物,无机化合物通常是指陶瓷、金属等,有机化合物通常是指有机高分子材料。当纳米材料为分散相,有机聚合物为连续相时,就是聚合物基纳米复合材料。什么是纳米生物复合材料 从材料学角度来看...

复合材料有哪些
复合材料是由两种或两种以上的材料组合而成的新材料,具有优于单一材料的性能。常见的复合材料包括:1. 纤维增强复合材料:由纤维增强剂(如碳纤维、玻璃纤维、芳纶纤维等)与基体材料(如聚合物、金属、陶瓷等)组合而成。2. 网格增强复合材料:由纤维网格与基体材料组合而成。3. 层板复合材料:由多层...

什么是纳米生物陶瓷材料?
这种纳米人工骨是一种高强柔韧的复合仿生生物活性材料。由于这种复合材料具有优异的生物相容性、力学相容性和生物活性,用它制成的纳米人工骨不但能与自然骨形成生物键合,而且易与人体肌肉和血管牢牢长在一起。并可以诱导软骨的生成,各种特性几乎与人骨特性相当。另外他们还构思将纳米固体陶瓷材料制造成人工眼球的外壳,使...

纳米材料的种类?
按化学组成可分为:纳米金属、纳米晶体、纳米陶瓷、纳米玻璃、纳米高分子和纳米复合材料。按材料物性可分为:纳米半导体、纳米磁性材料、纳米非线性光学材料、纳米铁电体、纳米超导材料、纳米热电材料等。按应用可分为纳米电子材料、纳米光电子材料、纳米生物医用材料、纳米敏感材料、纳米储能材料等。纳米材料大...

纳米是一种什么样的材质?
8. 纳米材料因其用量少而效果显著,能显著提升材料的性能,具有很高的附加值。纳米复合高分子材料、纳米抗菌和保鲜材料等都是纳米技术应用的例子。9. 由于纳米颗粒尺寸极小,比红血球小一千多倍,比细菌小几十倍,气体通过它们的扩散速度比常规材料快得多。此外,纳米颗粒与生物细胞膜的相互作用强,易于...

什么是纳米材料
纳米材料是指在三维空间中至少有一维处于纳米尺寸(0.1-100 nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。纳米结构是以纳米尺度的物质单元为基础按一定规律构筑或营造的一种新体系。它包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。对纳米阵列体系的研究集中在由...

纳米是什么东西
纳米复合高分子材料、纳米抗菌、保鲜、除臭材料等等,由于纳米材料的尺寸小,比血液中的红血球小一千多倍,比细菌小几十倍,气体通过其扩散的速度比常规材料快几千倍。纳米颗粒与生物细胞膜的化物作用很强,极易进入细胞内。 问题二:纳米技术是什么 一段时期以来,纳米技术频频在媒体中出现,有关纳米技术、纳米材料...

生物质复合材料学内容简介
这是一部面向高等教育的国家级规划教材,专为“十一五”期间的学生设计。全书共分为8个章节,详细讲解了生物质复合材料的基础知识,包括其与生物质资源的关联,以及生物质自身的结构和理化特性。此外,书中深入探讨了生物质与聚合物、金属、无机质的复合材料,特别是关注了纳米技术在其中的应用,涉及材料...

什么是纳米技术
因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等 。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和...

纳米材料简介?
纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。 1研究形状和趋势 纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,...

阿鲁科尔沁旗18467689140: 什么是纳米材料 -
诏砖银柴: 纳米材料是指在三维空间中至少有一维处于纳米尺寸(0.1-100 nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度. 纳米结构是以纳米尺度的物质单元为基础按一定规律构筑或营造的一种新体系.它包...

阿鲁科尔沁旗18467689140: 纳米纤维素/聚合物复合材料是什么意思 -
诏砖银柴: 《聚合物纳米复合材料》基于作者十多年的研究工作,融合了作者及其合作者的研究成果和国内外前沿概况,系统阐述纳米材料与纳米复合材料的定义、分类,纳米结构与纳米分散原创理论及科学技术体系.以胶体化学、溶胶一凝胶及插层化学原理为基础,提出纳米前驱物分散及分子自组织或自组装方法,阐述纳米复合材料的多功能性、纳米效应、多级纳米结构与性能之间的关系及其在化工、石油工程、阻燃、阻隔及催化领域的应用.

阿鲁科尔沁旗18467689140: 什么是一维纳米复合材料 -
诏砖银柴: 什么是纳米材料广义地说,所谓纳米材料,是指微观结构至少在一维方向上受纳米尺度(1nm——100nm)调制的各种固体超细材料,它包括零维的原子团蔟(几十个原子的聚集体)和纳米微粒;一维调制的纳米多层膜;二维调制的纳米微粒...

阿鲁科尔沁旗18467689140: 纳米复合材料的基本性质和特殊性质是什么?? -
诏砖银柴: 纳米复合材料的内涵非常丰富.如果指的是有机-无机纳米复合材料,它具有有机和无机材料各自的特性,而且也具有自己一些的特性.例如:有机-无机纳米复合膜就能够克服传统有机膜的trade-off效应,使得分离因子和通量同时升高.

阿鲁科尔沁旗18467689140: 纳米材料的制备方法(中文,英文)越全越好 -
诏砖银柴: 纳米材料的制备方法主要包括物理法和化学法两大类.1 物理法:放电爆炸法、机械合金化法、严重塑性变形法、惰性气体蒸发法、等离子蒸发法、电子束法、激光束法等.2 化学法:气相燃烧合成法、气相还原法、等离子化学气相沉积法、...

阿鲁科尔沁旗18467689140: 纳米复合材料有哪几种类型?如何进行稳定化设计 -
诏砖银柴: 纳米复合材料是由两种或两种以上的固相至少在一维以纳米级大小(1-100 nm)复合而成的复合材料.这些固相可以是非晶质、半晶质、晶质或者兼而有之,而且可以是无机物、有机物或二者兼有.纳米复合材料也可以是指分散相尺寸有一维小于100nm的复合材料,分散相的组成可以是无机化合物,也可以是有机化合物,无机化合物通常是指陶瓷、金属等,有机化合物通常是指有机高分子材料.当纳米材料为分散相,有机聚合物为连续相时,就是聚合物基纳米复合材料.

阿鲁科尔沁旗18467689140: 名词解释:纳米生物大分子复合体 -
诏砖银柴: 利用生物大分子制造分子器件,模仿和制造类似生物大分子的分子机器.纳米科技的最终目的是制造分子机器,而分子机器的启发来源于生物体系中存在的大量的生物大分子,它们被费曼等人看作是自然界的分子机器.从这个意义上说,纳米生物学应该是纳米科技中的一个核心领域.

阿鲁科尔沁旗18467689140: 复合材料是指什么?相比普通材质机翼,有什么优势? -
诏砖银柴: 1 复合材料是由两种或多种性质不同的材料通过物理和化学复合,组成具有两个或两个以上相态结构的材料.该类材料不仅性能优于组成中的任意一个单独的材料,而且还可具有组分单独不具有的独特性能. 复合材料按用途主要可分为结构复...

阿鲁科尔沁旗18467689140: 几种纳米生物复合探针的构建及其在生物分析中的应用 -
诏砖银柴: 作为一种多学科交叉的产物,纳米生物复合探针(Nanobio probe)也就应运而生[1].目前已有多种纳米材料被应用于构建各种功能化的纳米生物探针,包括纳米金(Gold nanopartile,AuNP)、量子点(Quantum dot, QD)和碳纳米管(Carbon ...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网