一般销售的磁盘阵列设备中包含有硬盘吗?

作者&投稿:象步 (若有异议请与网页底部的电邮联系)
磁盘阵列一定需要容量一样的硬盘吗?~

认识磁盘阵列 RAID



一、功能
1 对磁盘高速存取(提速): RAID将普通硬盘组成一个磁盘阵列,在主机写入数据,RAID控制器把主机要写入的数据分解为多个数据块,然后并行写入磁盘阵列;主机读取数据时,RAID控制器并行读取分散在磁盘阵列中各个硬盘上的数据,把它们重新组合后提供给主机。由于采用并行读写操作,从而提高了存储系统的存取系统的存取速度。

2 扩容

3 数据冗余

二、分类

RAID可分为级别0到级别6,通常称为:RAID0,RAID1,RAID2,RAID3,RAID4,RAID5,RAID6。

RAID0:RAID0并不是真正的RAID结构,没有数据冗余,RAID0连续地分割数据并并行地读/写于多个磁盘上。因此具有很高的数据传输率,但RAID0在提高性能的同时,并没有提供数据可靠性,如果一个磁盘失效,将影响整个数据。因此RAID0不可应用于需要数据高可用性的关键应用。

RAID1:RAID1通过数据镜像实现数据冗余,在两对分离的磁盘上产生互为备份的数据。RAID1可以提高读的性能,当原始数据繁忙时,可直接从镜像中读取数据。RAID1是磁盘阵列中费用最高的,但提供了最高的数据可用率。当一个磁盘失效,系统可以自动地交换到镜像磁盘上,而不需要重组失效的数据。

RAID2:从概念上讲,RAID2同RAID3类似,两者都是将数据条块化分布于不同的硬盘上,条块单位为位或字节。然而RAID2使用称为“加重平均纠错码”的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID2技术实施更复杂。因此,在商业环境中很少使用。

RAID3:不同于RAID2,RAID3使用单块磁盘存放奇偶校验信息。如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据。如果奇偶盘失效,则不影响数据使用。RAID3对于大量的连续数据可提供很好的传输率,但对于随机数据,奇偶盘会成为写操作的瓶颈。

RAID4:同RAID2和RAID3一样,RAID4和RAID5也同样将数据条块化并分布于不同的磁盘上,但条块单位为块或记录。RAID4使用一块磁盘作为奇偶校验盘,每次写操作都需要访问奇偶盘,成为写操作的瓶颈。在商业应用中很少使用。

RAID5:RAID5没有单独指定的奇偶盘,而是交叉地存取数据及奇偶校验信息于所有磁盘上。在RAID5上,读/写指针可同时对阵列设备进行操作,提供了更高的数据流量。RAID5更适合于小数据块,随机读写的数据。RAID3与RAID5相比,重要的区别在于RAID3每进行一次数据传输,需涉及到所有的阵列盘。而对于RAID5来说,大部分数据传输只对一块磁盘操作,可进行并行操作。在RAID5中有“写损失”,即每一次写操作,将产生四个实际的读/写操作,其中两次读旧的数据及奇偶信息,两次写新的数据及奇偶信息。

RAID6:RAID6与RAID5相比,增加了第二个独立的奇偶校验信息块。两个独立的奇偶系统使用不同的算法,数据的可靠性非常高。即使两块磁盘同时失效,也不会影响数据的使用。但需要分配给奇偶校验信息更大的磁盘空间,相对于RAID5有更大的“写损失”。RAID6的写性能非常差,较差的性能和复杂的实施使得RAID6很少使用。

三、详细介绍

RAID0是具有提速和扩容的目的

在RAID0模式中,数据被分割为一定数量的数据块(Chunk)交叉写在多个硬盘上,一般的来说在RAID0系统中数据被分割的数量同RAID阵列所使用的硬盘的数量是有关的,比如RAID0中采用了3块硬盘,那么数据将会被分为三份依次的写入三个硬盘,通俗的说这种模式其实就是利用RAID技术让系统认为三块硬盘组成一个容量更大的硬盘,因为这个过程没有数据校验所以这种RAID模式是读写速度最快的一种。

RAID0并没有从安全性角度考虑,实际上,如果RAID0当中的一块硬盘坏了,所有数据都会损坏,并且没有办法恢复。这使得RAID0的安全性能非常差,所以很多用户出于安全考虑没有使用RAID0模式。虽然如此,RAID0毕竟是所有RAID方式当中速度最快的一种模式,如果RAID0模式当中有两块硬盘的话,那么RAID0的存储读取数据的速度会是单个硬盘双倍。,如果使用6块硬盘的话,那么理论速率就是单个硬盘的6倍。如果在RAID0模式当中使用不同的硬盘会造成两方面的问题,首先,RAID0的有效硬盘容量会是最小的硬盘的容量乘上硬盘的个数,这是因为如果容量的最小的硬盘存满了之后,RAID0依然会将文件平均分配到各个硬盘当中,此时便不能完成存储任务了;其次,如果RAID0当中的硬盘速度不同,那么整体的速度会是速度最慢的硬盘的速度乘上硬盘的个数,这是因为RAID0模式是需要将上一部的存储任务完成之后才能进行下一步的进程,这样,其它的速度快的硬盘会停下来等待速度慢的硬盘完成存储或者读取任务,使得整体性能有所下降。所以,在这里建议使用RAID0模式的用户最好选择容量和速度相同的硬盘,最好是同一品牌的同种产品。

因此RAID0在严格意义上说不是“冗余独立磁盘阵列”。RAID0模式一般用于需要快速处理数据但是对于数据的安全性要求不高的场合。这种RAID模式的特点是简单,而且并不需要复杂和昂贵的控制器。采用RAID0模式至少需要2块硬盘,最终得到的存储容量也是这两块硬盘的和。

RAID0的随机读取性能:很好
RAID0的随机写入性能:很好
RAID0的持续读取性能:很好
RAID0的持续写入性能:很好

RAID0的优点:最快的读写性能,如果每块硬盘拥有独立的控制器性能将会更好。

RAID0的缺点:任何一块硬盘出现故障所有的数据都会丢失,大部分的控制器都是通过软件实现的,所以效能并不好。

RAID1

RAID1模式是让组成RAID1模式的硬盘互为镜像,当你向硬盘中写入数据的时候,两个硬盘同时存储相同的数据,这样即使其中一个硬盘出现了故障,系统利用另外一个硬盘一样可以正常运行。RAID1相对于单块硬盘来说它的数据读取性能会更好一些,因为当一块硬盘处于忙的状态时,RAID控制器可以去读取另一块硬盘中同样的数据,但是写入数据性能不但没有增长而且可能会有轻微下降。当其中一块硬盘出现故障之后,新的数据可以写入仍然能够正常工作的硬盘,当使用新的硬盘替换掉原来的硬盘之后,RAID控制器会自动的把数据复制到新的硬盘上。RAID1模式的最大特点就是冗余性高,但是由于大部分的功能是利用软件来实现的,所以它会增加处理器的负担。这种RAID模式非常适合对数据的安全性有极高要求的人。

在RAID1模式当中,所使用的硬盘最好是相同的,否则会出现浪费硬盘空间的情况。由于RAID1模式是将相同的信息写入到不同的硬盘当中,所以RAID1模式的有效硬盘容量是阵列当中容量最小的硬盘的容量。举例来说,如果RAID1模式中有一块容量为20GB的硬盘和一块容量为30GB的硬盘,那么总体的RAID1的有效容量是20GB,从此那块30GB硬盘上剩下的10GB容量就会被浪费。同时,如果两块硬盘的速度不同的话,那么速度较快的那块硬盘依然会停下来等待速度较慢的那块硬盘完成任务之后再进行下一步行动。

RAID1的随机读取性能:好
RAID1的随机写入性能:好
RAID1的持续读取性能:一般
RAID1的持续写入性能:好

RAID1的优点:数据高可靠性,易于实现,设计简单。

RAID1的缺点:比RAID0相比速度较慢,特别是写入速度,另外就是我们仅仅能使用一半的硬盘容量。

RAID0+1

这种RAID模式其实是RAID0和RAID1模式的组合,至少需要4块硬盘。其中任何两块组成一个RAID0磁盘阵列,然后两个RAID0磁盘阵列可以看成两个容量更大、速度更快的硬盘,它们再组成一个RAID1磁盘阵列。这样的系统保证了较高的磁盘性能和较高的数据安全性。当然缺点也是显而易见的就是成本较高,构造比较复杂。RAID0+1在容错性能方面仅次于RAID5,一般用于文件服务器等方面。

RAID0+1的随机读取性能:很好
RAID0+1的随机写入性能:好
RAID0+1的持续读取性能:很好
RAID0+1的持续写入性能:好

RAID0+1的优点:相对于单块硬盘具有更高的读写性能,而且大大提高了数据的安全性。

RAID0+1的缺点:成本较高,至少需要4块硬盘。

RAID2

RAID2模式也相当的复杂,用于存储数据的硬盘以RAID0的模式来组合,加上专门存放海明ECC校验码的硬盘,当然为了提高校验码数据的安全,校验码硬盘至少是两个组成RAID1模式。这样即使存储数据的其中一个硬盘损坏,RAID控制器可以通过海明码来恢复数据到新的硬盘上。RAID2一般针对大数据量操作和超级计算机应用等方面,但是并不适于普通用户。因为要在数据存储的过程中生成校验码,所以这种磁盘阵列的性能并不高。由于各种原因这种磁盘阵列模式并没有投入到实际的商业应用中去。因为价格不菲,当然也不会为普通用户所接受了。

RAID2的随机读取性能:一般
RAID2的随机写入性能:差,主要因为所有的操作都要经过ECC运算
RAID2的持续读取性能:很好
RAID2的持续写入性能:一般

RAID2的优点:数据安全性高,只要存放校验码的硬盘没有故障就能恢复数据。

RAID2的缺点:昂贵、需要专门的硬盘存放校验码、效率不高、没有商业应用的支持。

RAID3

同RAID2模式一样,RAID3的数据也是被分成数据块依次存储到多个硬盘上的。只是RAID3把数据以bit为单位来分割并且存储到各个硬盘上。它的优点就是具有高速的读写能力,当然写入性能因为在写入过程中需要生成奇偶校验码所以速度会受到一定的影响——它也需要一个专用的硬盘来存储奇偶校验码。当其中一个存储数据的硬盘出现故障之后,系统依然能够正常运行,但是性能会受到影响,如果在更换坏硬盘之前又有一块硬盘出现故障,那么这个磁盘阵列的数据将会全部丢失,无法恢复。在这种磁盘阵列模式下,要求所有硬盘的转速要同步,这个要求在实际应用中难度不小。RAID3至少需要3块硬盘,其中一块用于存放奇偶校验码——奇偶校验码是通过异或运算得到的。

这种RAID模式如果使用软件控制器来实现将会明显的影响性能,因为这种组合比较复杂,不过同RAID0+1模式相比它最少只要3个硬盘就可以实现——所以成本有所下降,总的来说这种磁盘阵列比较适合视频处理和编辑等方面的应用。

RAID3的随机读取性能:好
RAID3的随机写入性能:很差
RAID3的持续读取性能:很好
RAID3的持续写入性能:一般

RAID3的优点:比较适合视频编辑等需要大数据量调用的场合。

RAID3的缺点:实现各个驱动器的转速同步非常困难(目前大部分的硬盘都不支持这个功能),需要复杂的控制器。

RAID4

RAID4模式同RAID3几乎是一样的,数据都是分成小的数据块依次存储在多个硬盘之上,奇偶校验码存放在独立的奇偶校验盘上。唯一不同的是,在数据分割上RAID3是以bit为单位而RAID4是以Byte为单位。这样可以使得RAID4同RAID3具有一样的读取速度,当然写入性能因为需要在写入过程中产生校验码并且存储到校验盘而受到了影响。

这种模式的最大好处就是不需要各个硬盘之间在转速上保持同步,这就使得控制器不需要那么复杂。它的写入性能是所有RAID模式中最差的。同RAID3模式一样,当其中一块硬盘损坏,数据并不会丢失,如果在故障盘被替换之前,第二块硬盘也发盘故障将会导致所有的数据都丢失。相对其它的RAID模式,恢复故障硬盘中的数据的效率相当低。

这种磁盘阵列模式也是至少需要3块硬盘才能搭建而成。奇偶校验码是通过异或运算来得到的。它适于一般的应用程序,包括视频处理等应用。它的造价也不算高,因为只要一块硬盘作为校验码磁盘就可以了。

RAID4的随机读取性能:很好
RAID4的随机写入性能:一般,主要因为要向奇偶校验磁盘写入校验码
RAID4的持续读取性能:好
RAID4的持续写入性能:一般

RAID4的优点:除了RAID3的优点之外,它并不需要同步驱动器转速。

RAID4的缺点:写入性能很差,控制器的要求较高。

RAID5

RAID5使用至少三块硬盘来实现阵列,它既能实现RAID0的加速功能也能实现RAID1的备份数据功能,在阵列当中有三块硬盘的时候,它将会把所需要的存储的数据按照用户定义的分割大小分割成文件碎片存储到两块硬盘当中,此时,阵列当中的第三块硬盘不接收文件碎片,它接收到的是用来校验存储在另外两块硬盘当中数据的一部分数据,这部分校验数据是通过一定的算法产生的,可以通过这部分数据来恢复存储在另外两个硬盘上的数据。另外,这三块硬盘的任务并不是一成不变的,也就是说在这次存储当中可能是1号硬盘和2号硬盘用来存储分割后的文件碎片,那么在下次存储的时候可能就是2号硬盘和3号硬盘来完成这个任务了。可以说,在每次存储操作当中,每块硬盘的任务是随机分配的,不过,肯定是两块硬盘用来存储分割后的文件碎片另一块硬盘用来存储校验信息。

这个校验信息一般是通过RAID控制器运算得出的,通常这些信息是需要一个RAID控制器上有一个单独的芯片来运算并决定将此信息发送到哪块硬盘存储。RAID5同时会实现RAID0的高速存储读取并且也会实现RAID1的数据恢复功能,也就是说在上面所说的情况下,RAID5能够利用三块硬盘同时实现RAID0的速度加倍功能也会实现RAID1的数据备份功能,并且当RAID5当中的一块硬盘损坏之后,加入一块新的硬盘同样可以实现数据的还原。

RAID5是截止到目前我们所介绍的几款RAID模式中控制器设计最复杂的一种。RAID5可以应用在大部分的领域中,比如多用户和多任务环境中。目前的很多Web服务器和其它的Internet服务器都是采用这种形式的磁盘阵列,比如最近推出的Quantum Snap服务器就采用了外置式的RAID5磁盘阵列的设计。奇偶校验一般会占据大约33%的磁盘空间的容量,所以对于一个总容量为120GB的RAID5磁盘阵列而言,可用的空间将是80GB左右。不过这种磁盘阵列模式在一般的主板进程的RAID控制器中都不提供支持,比如Abit KR7A-RAID主板仅仅支持RAID0、RAID1、RAID0+1。当然只要采用校验码的方式,就会一定程度上影响写入性能,因此很多磁盘阵列厂商都在磁盘阵列中加入了写缓存来提高写入性能。

RAID5模式并不是一切都好,如果阵列当中某块硬盘上的信息发生了改变的话,那么就需要重新计算文件分割碎片,并且,校验信息也需要重新计算,这时,三个硬盘都需要重新调用。同样,如果要做RAID5阵列的话,最好使用相同容量相同速度的硬盘,RAID5模式的有效容量是阵列中容量最小的硬盘容量乘上阵列中硬盘的数目减去一后的数,这里硬盘数目要减去一是因为其中有一块硬盘用来存放校验信息。

RAID5的随机读取性能:非常好(当使用大数据块时)
RAID5的随机写入性能:一般,但是优于RAID3或都RAID4
RAID5的持续读取性能:好(当使用小数据块时)
RAID5的持续写入性能:一般

RAID5的优点:不需要专门的校验码磁盘,读取速度快,而且解决了写入速度相对较慢的问题。

RAID5的缺点:写入性能依然不尽如人意。

RAID6

RAID6是RAID家族中的新技术,是在RAID5基础上扩展而来的。所以同RAID5一样,数据和校验码都是被分成数据块然后分别存储到磁盘阵列的各个硬盘上。RAID6加入了一个独立的校验磁盘,它把分布在各个磁盘上的校验码都备份在一起,这样RAID6磁盘阵列就允许多个磁盘同时出现故障,这对于数据安全要求很高的应用场合是非常必要的。这样搭建一个RAID6磁盘阵列最少需要4块硬盘。但是RAID6并没有改善RAID5写入性能不佳的情况,写入缓存的应用仅仅能对于这个缺点进行一定程度的弥补但是并不能从根本上解决问题。因为RAID5和RAID6都可以根据应用程序来更改数据块的大小,所以它的实际性能还会受到这个因素的影响。

在实际应用中RAID6的应用范围并没有其它的RAID模式那么广泛。如果实现这个功能一般需要设计更加复杂、造价更昂贵的RAID控制器,所以它一般也不会集成在主板上。

RAID6的随机读取性能:很好(当使用大数据块时)
RAID6的随机写入性能:差,因为不但要在每硬盘上写入校验数据而且要在专门的校验硬盘上写入数据
RAID6的持续读取性能:好(当使用小数据块时)
RAID6的持续写入性能:一般

RAID6的优点:快速的读取性能,更高的容错能力。

RAID6的缺点:很慢的写入速度,RAID控制器在设计上更加复杂,成本更高。

热交换和热冗余

在RAID系统中一般都具有热交换和热冗余能力。热交换允许在不关闭系统或电源的前提下更换故障硬盘,当然更换上的新硬盘也可以被系统动态的识别出来并且正确的配置和添加,而这些都不需要重新启动计算机。这样做的好处是勿庸置疑的,对于维护人员来说非常的简单,而对于很多应用场合,比如Web服务器等,用户并不希望服务器停机,这样造成的损失将是不可估量的。很多HP/DELL服务器产品和RAID磁盘阵列都具有热交换的能力。

热冗余一般用于不适于热交换的场合。这种设计一般是在故障出现之前就在计算机中配置了额外的硬盘,当有硬盘出现故障的时候,这块冗余的就可以自动替代故障的硬盘的位置,对于这样的系统在系统关闭之前是不能把损坏的硬盘拔下来的。热冗余虽然不如热交换方便,但是总比没有好一些。

小结

其实磁盘阵列的种类非常多,我们今天介绍的是部分基本的应用模式,在实际应用为了达到足够的性能和稳定,可以把各种RAID模式搭配使用,当然这样对于RAID控制器的要求会更高,磁盘阵列系统的成本也就更高。

服务器所采用的RAID一般是基于SCSI的,所以这样RAID系统的成本将会更加高昂。其实这个功能对于我们个人的应用还具有一定的距离,即使你拥有了一张整合了RAID控制器的主板,也需要至少2块硬盘(一般的要求这两块硬盘在容量、品牌、转速上都是一样的),对于个人用户来说这是一笔不小的开支。当然如果你有特殊的需要,比如需要假设一个工作站或者Web服务器,但是又不想花费太多的资金,那么IDE RAID还是一个不错的选择。这里需要提醒大家的是,一般的板载IDE RAID的处理器占用率较高,并且IDE RAID在部分应用中还不如SCSI硬盘

磁盘阵列(DiscArray)是由许多台磁盘机或光盘机按一定的规则,如分条(Striping)、分块(Declustering)、交叉存取(Interleaving)等组成一个快速,超大容量的外存储器子系统。它在阵列控制器的控制和管理下,实现快速,并行或交叉存取,并有较强的容错能力。从用户观点看,磁盘阵列虽然是由几个、几十个甚至上百个盘组成,但仍可认为是一个单一磁盘,其容量可以高达几百~上千千兆字节,因此这一技术广泛为多媒体系统所欢迎。

盘阵列的全称是:
RedundanArrayofInexpensiveDisk,简称RAID技术。它是1988年由美国加州大学Berkeley分校的DavidPatterson教授等人提出来的磁盘冗余技术。从那时起,磁盘阵列技术发展得很快,并逐步走向成熟。现在已基本得到公认的有下面八种系列。
1.RAID0(0级盘阵列)
RAID0又称数据分块,即把数据分布在多个盘上,没有容错措施。其容量和数据传输率是单机容量的N倍,N为构成盘阵列的磁盘机的总数,I/O传输速率高,但平均无故障时间MTTF(MeanTimeToFailure)只有单台磁盘机的N分之一,因此零级盘阵列的可靠性最差。
2.RAID1(1级盘阵列)
RAID1又称镜像(Mirror)盘,采用镜像容错来提高可靠性。即每一个工作盘都有一个镜像盘,每次写数据时必须同时写入镜像盘,读数据时只从工作盘读出。一旦工作盘发生故障立即转入镜像盘,从镜像盘中读出数据,然后由系统再恢复工作盘正确数据。因此这种方式数据可以重构,但工作盘和镜像盘必须保持一一对应关系。这种盘阵列可靠性很高,但其有效容量减小到总容量一半以下。因此RAID1常用于对出错率要求极严的应用场合,如财政、金融等领域。
3.RAID2(2级盘阵列)
RAID2又称位交叉,它采用汉明码作盘错检验,无需在每个扇区之后进行CRC(CyclicReDundancycheck)检验。汉明码是一种(n,k)线性分组码,n为码字的长度,k为数据的位数,r为用于检验的位数,故有:n=2r-1r=n-k
因此按位交叉存取最有利于作汉明码检验。这种盘适于大数据的读写。但冗余信息开销还是太大,阻止了这类盘的广泛应用。
4.RAID3(3级盘阵列)
RAID3为单盘容错并行传输阵列盘。它的特点是将检验盘减小为一个(RAID2校验盘为多个,DAID1检验盘为1比1),数据以位或字节的方式存于各盘(分散记录在组内相同扇区号的各个磁盘机上)。它的优点是整个阵列的带宽可以充分利用,使批量数据传输时间减小;其缺点是每次读写要牵动整个组,每次只能完成一次I/O。
5.RAID4(4级盘阵列)
RAID4是一种可独立地对组内各盘进行读写的阵列。其校验盘也只有一个。
RAID4和RAID3的区别是:RAID3是按位或按字节交叉存取,而RAID4是按块(扇区)存取,可以单独地对某个盘进行操作,它无需象RAID3那样,那怕每一次小I/O操作也要涉及全组,只需涉及组中两台磁盘机(一台数据盘,一台检验盘)即可。从而提高了小量数据的I/O速率。
6.RAID5(5级盘阵列)
RAID5是一种旋转奇偶校验独立存取的阵列。它和RAID1、2、3、4各盘阵列的不同点,是它没有固定的校验盘,而是按某种规则把其冗余的奇偶校验信息均匀地分布在阵列所属的所有磁盘上。于是在同一台磁盘机上既有数据信息也有校验信息。这一改变解决了争用校验盘的问题,因此DAID5内允许在同一组内并发进行多个写操作。所以RAID5即适于大数据量的操作,也适于各种事务处理。它是一种快速,大容量和容错分布合理的磁盘阵列。
7.RAID6(6级盘阵列)
RAID6是一种双维奇偶校验独立存取的磁盘阵列。它的冗余的检、纠错信息均匀分布在所有磁盘上,而数据仍以大小可变的块以交叉方式存于各盘。这类盘阵列可容许双盘出错。
8.RAID7(7级盘阵列)
RAID7是在RAID6的基础上,采用了cache技术,它使得传输率和响应速度都有较大的提高。Cache是一种高速缓冲存储器,即数据在写入磁盘阵列以前,先写入cache中。一般采用cache分块大小和磁盘阵列中数据分块大小相同,即一块cache分块对应一块磁盘分块。在写入时将数据分别写入两个独立的cache,这样即使其中有一个cache出故障,数据也不会丢失。写操作将直接在cache级响应,然后再转到磁盘阵列。数据从cache写到磁盘阵列时,同一磁道的数据将在一次操作中完成,避免了不少块数据多次写的问题,提高了速度。在读出时,主机也是直接从cache中读出,而不是从阵列盘上读取,减少与磁盘读操作次数,这样比较充分地利用了磁盘带宽。
这样cache和磁盘阵列技术的结合,弥补了磁盘阵列的不足(如分块写请求响应差等缺陷),从而使整个系统以高效、快速、大容量、高可靠以及灵活、方便的存储系统提供给用户,从而满足了当前的技术发展的需要,尤其是多媒体系统的需要。
解析磁盘阵列的关键技术
存储技术在计算机技术中受到广泛关注,服务器存储技术更是业界关心的热点。一谈到服务器存储技术,人们几乎立刻与SCSI(Small Computer Systems Interface)技术联系在一起。尽管廉价的IDE硬盘在性能、容量等关键技术指标上已经大大地提高,可以满足甚至超过原有的服务器存储设备的需求。但由于Internet的普及与高速发展,网络服务器的规模也变得越来越大。同时,Internet不仅对网络服务器本身,也对服务器存储技术提出了苛刻要求。无止境的市场需求促使服务器存储技术飞速发展。而磁盘阵列是服务器存储技术中比较成熟的一种,也是在市场上比较多见的大容量外设之一。
在高端,传统的存储模式无论在规模上,还是安全上,或是性能上,都无法满足特殊应用日益膨胀的存储需求。诸如存储局域网(SAN)等新的技术或应用方案不断涌现,新的存储体系结构和解决方案层出不穷,服务器存储技术由直接连接存储(DAS)向存储网络技术(NAS)方面扩展。在中低端,随着硬件技术的不断发展,在强大市场需求的推动下,本地化的、基于直接连接的磁盘阵列存储技术,在速度、性能、存储能力等方面不断地迈上新台阶。并且,为了满足用户对存储数据的安全、存取速度和超大的存储容量的需求,磁盘阵列存储技术也从讲求技术创新、重视系统优化,以技术方案为主导的技术推动期逐渐进入了强调工业标准、着眼市场规模,以成熟产品为主导的产品普及期。
回顾磁盘阵列的发展历程,一直和SCSI技术的发展紧密关联,一些厂商推出的专有技术,如IBM的SSA(Serial Storage Architecture)技术等,由于兼容性和升级能力不尽如人意,在市场上的影响都远不及SCSI技术广泛。由于SCSI技术兼容性好,市场需求旺盛,使得SCSI技术发展很快。从最原始5MB/s传输速度的SCSI-1,一直发展到现在LVD接口的160MB/s传输速度的Ultra 160 SCSI,320MB/s传输速度的Ultra 320 SCSI接口也将在2001年出现(见表1)。从当前市场看,Ultra 3 SCSI技术和RAID(Redundant Array of Inexpensive Disks)技术还应是磁盘阵列存储的主流技术。
SCSI技术
SCSI本身是为小型机(区别于微机而言)定制的存储接口,SCSI协议的Version 1 版本也仅规定了5MB/s传输速度的SCSI-1的总线类型、接口定义、电缆规格等技术标准。随着技术的发展,SCSI协议的Version 2版本作了较大修订,遵循SCSI-2协议的16位数据带宽,高主频的SCSI存储设备陆续出现并成为市场的主流产品,也使得SCSI技术牢牢地占据了服务器的存储市场。SCSI-3协议则增加了能满足特殊设备协议所需要的命令集,使得SCSI协议既适应传统的并行传输设备,又能适应最新出现的一些串行设备的通讯需要,如光纤通道协议(FCP)、串行存储协议(SSP)、串行总线协议等。渐渐地,“小型机”的概念开始弱化,“高性能计算机”和“服务器”的概念在人们的心目中得到强化,SCSI一度成为用户从硬件上来区分“服务器”和PC机的一种标准。
通常情况下,用户对SCSI总线的关心放在硬件上,不同的SCSI的工作模式意味着有不同的最大传输速度。如40MB/s的Ultra SCSI、160MB/s的Ultra 3 SCSI等等。但最大传输速度并不代表设备正常工作时所能达到的平均访问速度,也不意味着不同SCSI工作模式之间的访问速度存在着必然的“倍数”关系。SCSI控制器的实际访问速度与SCSI硬盘型号、技术参数,以及传输电缆长度、抗干扰能力等因素关系密切。提高SCSI总线效率必须关注SCSI设备端的配置和传输线缆的规范和质量。可以看出,Ultra 3模式下获得的实际访问速度还不到Ultra Wide模式下实际访问速度的2倍。
一般说来,选用高速的SCSI硬盘、适当增加SCSI通道上连接硬盘数、优化应用对磁盘数据的访问方式等,可以大幅度提高SCSI总线的实际传输速度。尤其需要说明的是,在同样条件下,不同的磁盘访问方式下获得的SCSI总线实际传输速度可以相差几十倍,对应用的优化是获得高速存储访问时必须关注的重点,而这却常常被一些用户所忽视。按4KB数据块随机访问6块SCSI硬盘时,SCSI总线的实际访问速度为2.74MB/s,SCSI总线的工作效率仅为总线带宽的1.7%;在完全不变的条件下,按256KB的数据块对硬盘进行顺序读写,SCSI总线的实际访问速度为141.2MB/s,SCSI总线的工作效率高达总线带宽的88%。
随着传输速度的提高,信号传输过程中的信号衰减和干扰问题显得越来越突出,终结器在一定程度上可以起到降低信号波反射,改善信号质量的作用。同时,LVD(Low-Voltage Differential)技术的应用也越来越多。LVD工作模式是和SE(Single-Ended)模式相对应的,它可以很好地抵抗传输干扰,延长信号的传输距离。同时,Ultra 2 SCSI和Ultra 3 SCSI模式也通过采用专用的双绞型SCSI电缆来提高信号传输的质量。
在磁盘阵列的概念中,大容量硬盘并不是指单个硬盘容量大,而是指将单个硬盘通过RAID技术,按RAID 级别组合成更大容量的硬盘。所以在磁盘阵列技术中,RAID技术是比较关键的,同时,根据所选用的RAID级别的不同,得到的“大硬盘”的功能也有不同。
RAID是一项非常成熟的技术,但由于其价格比较昂贵,配置也不方便,缺少相对专业的技术人员,所以应用并不十分普及。据统计,全世界75%的服务器系统目前没有配置RAID。由于服务器存储需求对数据安全性、扩展性等方面的要求越来越高,RAID市场的开发潜力巨大。RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同。目前对RAID级别的定义可以获得业界广泛认同的只有4种,RAID 0、RAID 1、RAID 0+1和RAID 5。
RAID 0是无数据冗余的存储空间条带化,具有低成本、极高读写性能、高存储空间利用率的RAID级别,适用于Video / Audio信号存储、临时文件的转储等对速度要求极其严格的特殊应用。但由于没有数据冗余,其安全性大大降低,构成阵列的任何一块硬盘损坏都将带来数据灾难性的损失。所以,在RAID 0中配置4块以上的硬盘,对于一般应用来说是不明智的。
RAID 1是两块硬盘数据完全镜像,安全性好,技术简单,管理方便,读写性能均好。但其无法扩展(单块硬盘容量),数据空间浪费大,严格意义上说,不应称之为“阵列”。
RAID 0+1综合了RAID 0和RAID 1的特点,独立磁盘配置成RAID 0,两套完整的RAID 0互相镜像。它的读写性能出色,安全性高,但构建阵列的成本投入大,数据空间利用率低,不能称之为经济高效的方案。
RAID 5是目前应用最广泛的RAID技术。各块独立硬盘进行条带化分割,相同的条带区进行奇偶校验(异或运算),校验数据平均分布在每块硬盘上。以n块硬盘构建的RAID 5阵列可以有n-1块硬盘的容量,存储空间利用率非常高(见图6)。任何一块硬盘上数据丢失,均可以通过校验数据推算出来。它和RAID 3最大的区别在于校验数据是否平均分布到各块硬盘上。RAID 5具有数据安全、读写速度快,空间利用率高等优点,应用非常广泛,但不足之处是1块硬盘出现故障以后,整个系统的性能大大降低。
对于RAID 1、RAID 0+1、RAID 5阵列,配合热插拔(也称热可替换)技术,可以实现数据的在线恢复,即当RAID阵列中的任何一块硬盘损坏时,不需要用户关机或停止应用服务,就可以更换故障硬盘,修复系统,恢复数据,对实现HA(High Availability)高可用系统具有重要意义。
各厂商还在不断推出各种RAID级别和标准。例如更高安全性的,从RAID控制器开始镜像的RAID;更快读写速度的,为构成RAID的每块硬盘配置CPU和Cache的RAID等等,但都不普及。用IDE硬盘构建RAID的技术是新出现的一个技术方向,对市场影响也较大,其突出优点就是构建RAID阵列非常廉价。目前IDE RAID可以支持RAID 0、RAID 1和RAID 0+1三个级别,最多支持4块IDE硬盘。由于受IDE设备扩展性的限制,同时,也由于IDE设备也缺乏热可替换的技术支持的原因,IDE RAID的应用还不多。
总之,发展是永恒的主题,在服务器存储技术领域也不例外。一方面,一些巨头厂商尝试推出新的概念或标准,来领导服务器及存储技术的发展方向,较有代表性的如Intel力推的IA-64架构及存储概念;另一方面,致力于存储的专业厂商以现有技术和工业标准为基础,推动SCSI、RAID、Fibre Channel等基于现有存储技术和方案快速更新和发展。在市场经济条件下,检验技术发展的唯一标准是市场的认同。市场呼唤好的技术,而新的技术必须起到推动市场向前发展作用时才能被广泛接受和承认。随着高性能计算机市场的发展,高性能比、高可靠性、高安全性的存储新技术也会不断涌现。
现在市场上的磁盘阵列产品有很多,用户在选择磁盘阵列产品的过程中,也要根据自己的需求来进行选择,现在列举几个磁盘阵列产品,同时也为需要磁盘阵列产品的用户提供一些选择。表2列出了几种磁盘阵列的主要技术指标。
--------------------------------------------------------------------------------
小知识:磁盘阵列的可靠性和可用性
可靠性,指的是硬盘在给定条件下发生故障的概率。可用性,指的是硬盘在某种用途中可能用的时间。磁盘阵列可以改善硬盘系统的可靠性。从表3中可以看到RAID硬盘子系统与单个硬盘子系统的可靠性比较。
此外,在系统的可用性方面,单一硬盘系统的可用性比没有数据冗余的磁盘阵列要好,而冗余磁盘阵列的可用性比单个硬盘要好得多。这是因为冗余磁盘阵列允许单个硬盘出错,而继续正常工作;一个硬盘故障后的系统恢复时间也大大缩短(与从磁带恢复数据相比);冗余磁盘阵列发生故障时,硬盘上的数据是故障当时的数据,替换后的硬盘也将包含故障时的数据。但是,要得到完全的容错性能,计算机硬盘子系统的其它部件也必须有冗余。

磁盘阵列是数据而言的,并非是什么产品,他们是主板支持在先,自己购买,然后再组建。。
=============================================
如果自己需要,就自己去买的。
===============================================
关于磁盘阵列的种类及好处,很好着的=
在次就不说了

希望是你想知道的答案。

硬盘要自己买吧,不过可以去电脑城,在一家就都能解决了

不包含


硬盘怎么组阵列
问题三:8块硬盘怎么组成磁盘阵列组10 RAID 10就是RAID 1+0,即先组建两组RAID 1镜像,然后再将两组RAID 1镜像组建成为RAID 0;这个要看你怎么级,RAID最少3个硬盘才能组,如果你4个硬盘组成RAID 1,那么这4个1T硬盘变成了一个1T,4个硬盘坏了一个两个都不会丢数据。然后两组组成RAID 0,那么你能看到一个2T的...

磁盘阵列什么意思?raid5最少需要几块硬盘
磁盘阵列简称RAID(RedundantpArrayspofpInexpensivepDisks),有”价格便宜且多余的磁盘阵列”之意。其原理是利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。磁盘阵列主要针对硬盘,在容量及速度上,无法跟上CPU及内存的发展,提出改善方法。磁盘阵列是由很多便宜、容量较小、稳定性较高、...

磁盘阵列的的原理是什么?它运用的是什么技术
RAID 磁盘阵列支持扩充硬盘容量等。一旦RAID出现故障,硬件服务商大部分只能给客户重新初始化或者重建RAID,这样客户数据就会无法挽回。出现故障以后不要对RAID及硬盘进行初始化、重建、强制上线等危险操作,数据恢复基本上都可以成功。借助于技术和信誉好的数据恢复服务商,是系统集成商、服务器销售渠道以及企业...

笔记本如何组建磁盘阵列
笔记本组建磁盘阵列方法如下:1、当开机出现Ctrl-I的提示时,快速同时按下组合键Ctrl键和字母I键,此过程跳过较快,可多次尝试一下。2、进入Intel RAID配置界面,用上下键将光标选到第1项Create RAID Volume,按回车。3、会跳出RAID配置向导,第一行Name给要新建的RAID阵列起一个名字,默认名字是Volume...

磁盘阵列怎么做???
先用在D盘上点击右键选择格式化,别忘了在这里选择快速格式化,也就几秒种,庞大的D盘就格式化完毕。选择光盘上windows2000高级服务器版的安装文件夹,大约340M,复制粘贴到D盘。拷贝速度挺快,一分钟不到,就拷贝完了,看来raid5的磁盘传输速率确实不错。至此,硬件raid5的组建和使用,基本上说完....

台式机怎么做raid磁盘成列?
1、首先开机按F10进入BIOS,选择Advanced-System Options,将Configure Storage Controller for RAID的选项勾选上,然后点击保存。2、同时请在Advanced-Secure Boot Configuration中确认引导模式是Legacy还是UEFI。3、如果设置为legacy enable,接下来的操作和以前HP的商用电脑的操作方法一样,在开机HP画面按组合...

磁盘阵列有什么好处
一、简单回答,对个人电脑上的磁盘阵列,一般通过加装多块硬盘发挥两种作用:1、加快硬盘的读写速度,同时安全性降低。这种情况下,硬盘组阵列的方式为RAID0,组好后在操作系统中查看和使用多块硬盘时,感觉完全象一块硬盘,读写速度理论上是一块硬盘的N倍稍少,这个N等于阵列中的硬盘数。这常用于对...

磁盘阵列的stripe size 设置块大小,什么意思,选不同的KB有什么区别
Strip Size越大,顺序读写性能越好,但IOPS越低;,Strip Size越小,IOPS越高,随机读写性能越好。1、stripe size是在每个磁盘上连续写入数据的总量,也称作“条带深度”。可以指定每个逻辑驱动器的条带容量从2KB, 4KB, 8KB一直到128KB。2、为了获得更高的性能,要选择条带的容量等于或小于操作系统...

惠普服务器磁盘阵列控制器怎么设置?
我们可以如下操作使NetRAID可用。首先在服务器启动过程中,出现“Press to enter SETUP”提示时,按F2键SETUP,修改服务器的BIOS设置。在服务器的BIOS设置界面中,选择“User Preferences”项,确认“Integrated HP NetRAID”所对应的内容为“Enabled”,并且把它的下一级选项“Included SCSI_A Channel”设...

磁盘阵列BOIS里面怎么设置?
1、例如,首先在计算机上安装两个或多个硬盘,单击“开始”,然后单击“重新启动”。2、然后按如下所示按Delete键。3、进入BIOS,选择左侧的第四项,然后选择片上SATA类型。4、选择RAID,按ESC退出到主页,然后选择Save exit。5、接下来需要输入“Y”,按下回车确定就完成了。

神池县18512831755: 一般销售的磁盘阵列设备中包含有硬盘吗? -
龚伯卡迈: 磁盘阵列是数据而言的,并非是什么产品,他们是主板支持在先,自己购买,然后再组建..============================================= 如果自己需要,就自己去买的.=============================================== 关于磁盘阵列的种类及好处,很好着的= 在次就不说了 希望是你想知道的答案.

神池县18512831755: raid是干什么的起到什么做用它是什么样的? -
龚伯卡迈: RAID 0又称为Stripe或Striping,它代表了所有RAID级别中最高的存储性能.RAID 0提高存储性能的原理是把连续的数据分散到多个磁盘上存取,这样,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求...

神池县18512831755: RAID0是什么意思? -
龚伯卡迈: RAID是磁盘冗余阵列RAID0是一种RAID方式,RAID 0提高存储性能的原理是把连续的数据分散到多个磁盘上存取,这样,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求.这种数据上的并行操作可以充分利用总线的带宽,显著提高磁盘整体存取性能.RAID 1又称为Mirror或Mirroring(镜像),它的宗旨是最大限度的保证用户数据的可用性和可修复性. RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上.

神池县18512831755: 磁盘阵列需要的设备
龚伯卡迈: 首先得选支持阵列的主板.还有准备用RAID几阵列.比如RAID0速度翻倍.RAID1的速度是不会增加的.但是能备份数据等等..如果电脑不支持RAID就得买阵列卡.还有就是硬盘了.最好是买一样同型号的硬盘 你说的设备是指什么?.阵列就是电脑 啥都不需要.磁盘阵列就是多块硬盘配合工作.提高性能.或者更稳定保存数据.简单的说就是个多块硬盘的电脑没啥不一样的.俩硬盘就能阵列

神池县18512831755: RAID是什么啊 -
龚伯卡迈: 什么是RAID? 如何增加磁盘的存取速度,如何防止数据因磁盘的故障而丢失及如何有效的利用磁盘空间,一直是电脑专业人员和用户的困扰,而大容量磁盘的价格非常昂贵,对用户形成很大的负担.磁盘阵列技术的产生一举解决了这些问题....

神池县18512831755: 想买个磁盘阵列,有什么要注意的地方? -
龚伯卡迈: 磁盘阵列比较贵,但效果也是杠杠的,好处是稳定,安全性高,接口丰富,但它的容量并不会多大.所以,先要想清楚你的需求再考虑购买对象1. 一般磁盘阵列的硬盘都是15K或者10K的SAS盘,这种盘,大小从146到600G,主流是300GB,15...

神池县18512831755: 什么叫磁盘阵列?我去修理电脑人家问硬盘是否磁盘阵列过?有什么用呢?请解释,谢谢 -
龚伯卡迈: 磁盘阵列就是RAID,包含RAID 0~RAID 7等数个规范,常用的有RAID0、1、0+1、5.目前个人主板支持的主要是前三种.该技术主要是为了扩展分区容量或数据安全性.使用该技术的前提: 1.主板支持或有阵列卡; 2.你至少要有两块以上的同规格,同型号的硬盘. 发生你这种情况主要原因是: 1.你使用过该技术,不过你既然问这个问题,看来不可能. 2.你买的硬盘可能是返厂或旧的,这种可能性很大.因为看来你的硬盘出问题了,不知买了多长时间.

神池县18512831755: 磁盘阵列跟加硬盘的区别? -
龚伯卡迈: 给你个大概的. 磁盘阵列(DiscArray)是由许多台磁盘机或光盘机按一定的规则,如分条(Striping)、分块(Declustering)、交叉存取(Interleaving)等组成一个快速,超大容量的外存储器子系统.它在阵列控制器的控制和管理下,实现快...

神池县18512831755: 磁盘阵列怎么到入主机 -
龚伯卡迈: 一般的主机里面带有磁盘阵列卡, (1)在开机的时候会有字幕提示,一般是按ctrl+C,或者ctrl+H进入磁盘阵列配置界面,不同品牌主机进入时按键不同,所以开机的时候要仔细看; (2)这个界面就是做磁盘阵列的地方,在里面按照提示可以做你想要的磁盘阵列,如raid0,1,5等,具体步骤因主机品牌不同而异,不过大致一样,而且都很简单,每一步都有提示,按提示来基本上就能完成.

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网