三羧酸循环中的限速酶

作者&投稿:费念 (若有异议请与网页底部的电邮联系)
生物学中三羧酸循环过程的限速酶~

关键限速酶:柠檬酸合成酶
此外,三羧酸循环速度还受异柠檬酸脱氢酶,α-酮戊二酸脱氢酶的调控

呵呵,学生物竞赛的同学么?
三羧酸循环(TCA)也称为柠檬酸循环,是用于乙酰CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA与草酰乙酸缩合形成柠檬酸。
乙酰CoA进入由一连串反应构成的循环体系,被氧化生成H2O和CO2。由于这个循环反应开始于乙酰CoA与草酰乙酸(oxaloacetic acid)缩合生成的含有三个羧基的柠檬酸,因此称之为三羧酸循环或柠檬酸循环(citrate cycle)。在三羧酸循环中,柠檬酸合成酶催化的反应是关键步骤,草酰乙酸的供应有利于循环顺利进行。
其详细过程如下:�
(1)乙酰-CoA进入三羧酸循环
乙酰CoA具有硫酯键,乙酰基有足够能量与草酰乙酸的羧基进行醛醇型缩合。首先柠檬酸合酶的组氨酸残基作为碱基与乙酰CoA作用,使乙酰CoA的甲基上失去一个h+,生成的碳阴离子对草酰乙酸的羰基碳进行亲核攻击,生成柠檬酰CoA中间体,然后高能硫酯键水解放出游离的柠檬酸,使反应不可逆地向右进行。该反应由柠檬酸合成酶催化,是很强的放能反应。 由草酰乙酸和乙酰CoA合成柠檬酸是三羧酸循环的重要调节点,柠檬酸合成酶是一个变构酶,ATP是柠檬酸合成酶的变构抑制剂,此外,α-酮戊二酸、NADH能变构抑制其活性,长链脂酰CoA也可抑制它的活性,AMP可对抗ATP的抑制而起激活作用。
(2)异柠檬酸形成
柠檬酸的叔醇基不易氧化,转变成异柠檬酸而使叔醇变成仲醇,就易于氧化,此反应由顺乌头酸酶催化,为一可逆反应。
(3)第一次氧化脱羧
在异柠檬酸脱氢酶作用下,异柠檬酸的仲醇氧化成羰基,生成草酰琥珀酸的中间产物,后者在同一酶表面,快速脱羧生成α-酮戊二酸、NADH和co2,此反应为β-氧化脱羧,此酶需要Mg2+作为激活剂。 此反应是不可逆的,是三羧酸循环中的限速步骤,ADP是异柠檬酸脱氢酶的激活剂,而ATP,NADH是此酶的抑制剂。
(4)第二次氧化脱羧
在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰CoA、NADH·H+和CO2,反应过程完全类似于丙酮酸脱氢酶系催化的氧化脱羧,属于α�氧化脱羧,氧化产生的能量中一部分储存于琥珀酰CoA的高能硫酯键中。 α-酮戊二酸脱氢酶系也由三个酶(α-酮戊二酸脱羧酶、硫辛酸琥珀酰基转移酶、二氢硫辛酸脱氢酶)和五个辅酶(tpp、硫辛酸、hscoa、NAD+、FAD)组成。 此反应也是不可逆的。α-酮戊二酸脱氢酶复合体受ATP、GTP、NADH和琥珀酰CoA抑制,但其不受磷酸化/去磷酸化的调控。
(5)底物磷酸化生成ATP
在琥珀酸硫激酶的作用下,琥珀酰CoA的硫酯键水解,释放的自由能用于合成GTP(三磷酸鸟苷 )在细菌和高等生物可直接生成ATP,在哺乳动物中,先生成GTP,再生成ATP,此时,琥珀酰CoA生成琥珀酸和辅酶A。
(6)琥珀酸脱氢
琥珀酸脱氢酶催化琥珀酸氧化成为延胡索酸。该酶结合在线粒体内膜上,而其他三羧酸循环的酶则都是存在线粒体基质中的,这酶含有铁硫中心和共价结合的FAD,来自琥珀酸的电子通过FAD和铁硫中心,然后进入电子传递链到O2,丙二酸是琥珀酸的类似物,是琥珀酸脱氢酶强有力的竞争性抑制物,所以可以阻断三羧酸循环。
(7)延胡索酸的水化
延胡索酸酶仅对延胡索酸的反式(反丁烯二酸) 双键起作用,而对顺丁烯二酸(马来酸)则无催化作用,因而是高度立体特异性的。
(8)生成苹果酸
(9)草酰乙酸再生
在苹果酸脱氢酶(malic dehydrogenase)作用下,苹果酸仲醇基脱氢氧化成羰基,生成草酰乙酸(oxalocetate),NAD+是脱氢酶的辅酶,接受氢成为NADH·H+





三羰酸循环总结
乙酰CoA+3NAD++FAD+GDP+Pi—→2CO2+3NADH+FADH2+GTP+2H+ +CoA-SH ①CO2的生成,循环中有两次脱羧基反应(反应3和反应4)两次都同时有脱氢作用,但作用的机理不同,由异柠檬酸脱氢酶所催化的β�氧化脱羧,辅酶是NAD+,它们先使底物脱氢生成草酰琥珀酸,然后在Mn2+或Mg2+的协同下,脱去羧基,生成α-酮戊二酸。 α-酮戊二酸脱氢酶系所催化的α�氧化脱羧反应和前述丙酮酸脱氢酶系所催经的反应基本相同。 应当指出,通过脱羧作用生成CO2,是机体内产生CO2的普遍规律,由此可见,机体CO2的生成与体外燃烧生成CO2的过程截然不同。
②三羧酸循环的四次脱氢,其中三对氢原子以NAD+为受氢体,一对以FAD为受氢体,分别还原生成NADH+H+和FADH2。它们又经线粒体内递氢体系传递,最终与氧结合生成水,在此过程中释放出来的能量使adp和pi结合生成ATP,凡NADH+H+参与的递氢体系,每2H氧化成一分子H2O,每分子NADH最终产生2.5分子ATP,而FADH2参与的递氢体系则生成1.5分子ATP,再加上三羧酸循环中有一次底物磷酸化产生一分子ATP,那么,一分子柠檬酸参与三羧酸循环,直至循环终末共生成10分子ATP。
③乙酰CoA中乙酰基的碳原子,乙酰CoA进入循环,与四碳受体分子草酰乙酸缩合,生成六碳的柠檬酸,在三羧酸循环中有二次脱羧生成2分子CO2,与进入循环的二碳乙酰基的碳原子数相等,但是,以CO2方式失去的碳并非来自乙酰基的两个碳原子,而是来自草酰乙酸。
④三羧酸循环的中间产物,从理论上讲,可以循环不消耗,但是由于循环中的某些组成成分还可参与合成其他物质,而其他物质也可不断通过多种途径而生成中间产物,所以说三羧酸循环组成成分处于不断更新之中。

三羧酸循环中有三个限速酶,依次是:柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合体。

关键限速酶:柠檬酸合成酶
此外,三羧酸循环速度还受异柠檬酸脱氢酶,α-酮戊二酸脱氢酶的调控

正确答案:E
解析:异柠檬酸脱氢酶催化的反应是三羧酸循环过程的三个调控部位之一


柠檬酸合成
异柠檬酸脱氢
α酮戊二酸脱氢


AGAA是什么意思?
具体如下:AGA在生化里面是N—乙酰谷氨酸。它是尿素循环(鸟氨酸循环)第一步氨气、二氧化碳和ATP缩合生成氨基甲酰磷酸中作为限速酶 氨基甲酰磷酸合成酶I(CPS—I)的别构激活剂。AA是氨基酸的缩写。Amino Acid 氨基酸。

乙烯的生物合成途径,主要说明需要的酶
简称MACC).MACC的生成可看成是调节乙烯形成的另一条途径.综上所述,乙烯在果蔬中的生物合成遵循蛋氨酸 → SAM → ACC —(O2)→ 乙烯途径,其中ACC合成酶是乙烯生成的限速酶,因为该酶的出现使果实大量合成ACC,并进一步氧化生成乙烯.EFE是催化乙烯生物合成中ACC转化为乙烯的酶.

AGA,AA代表的缩写
具体如下:AGA在生化里面是N—乙酰谷氨酸。它是尿素循环(鸟氨酸循环)第一步氨气、二氧化碳和ATP缩合生成氨基甲酰磷酸中作为限速酶 氨基甲酰磷酸合成酶I(CPS—I)的别构激活剂。AA是氨基酸的缩写。Amino Acid 氨基酸。

乙烯的生物合成途径,主要说明需要的酶
蛋氨酸这样一个循环.其中形成甲硫基在组织中可以循环使用.2 acc的合成 由于acc是乙烯生物合成的直接前体,因此植物体内乙烯合成时从sam转变为acc这一过程非常重要,催化这个过程的酶是acc合成酶,这个过程通常被认为是乙烯形成的限速步骤.在从sam转变为acc这一过程中,受avg(氨基乙氧基乙烯基甘氨酸)和aoa(...

生物合成乙烯的过程
简称MACC).MACC的生成可看成是调节乙烯形成的另一条途径.综上所述,乙烯在果蔬中的生物合成遵循蛋氨酸 → SAM → ACC —(O2)→ 乙烯途径,其中ACC合成酶是乙烯生成的限速酶,因为该酶的出现使果实大量合成ACC,并进一步氧化生成乙烯.EFE是催化乙烯生物合成中ACC转化为乙烯的酶.

乙烯生物合成的主要途径有哪些
简称MACC).MACC的生成可看成是调节乙烯形成的另一条途径.综上所述,乙烯在果蔬中的生物合成遵循蛋氨酸 → SAM → ACC —(O2)→ 乙烯途径,其中ACC合成酶是乙烯生成的限速酶,因为该酶的出现使果实大量合成ACC,并进一步氧化生成乙烯.EFE是催化乙烯生物合成中ACC转化为乙烯的酶.

乙烯生物合成的直接和间接产物是什么?
简称MACC).MACC的生成可看成是调节乙烯形成的另一条途径.综上所述,乙烯在果蔬中的生物合成遵循蛋氨酸 → SAM → ACC —(O2)→ 乙烯途径,其中ACC合成酶是乙烯生成的限速酶,因为该酶的出现使果实大量合成ACC,并进一步氧化生成乙烯.EFE是催化乙烯生物合成中ACC转化为乙烯的酶.

乙烯的生物合成途径有哪些?
简称MACC).MACC的生成可看成是调节乙烯形成的另一条途径.综上所述,乙烯在果蔬中的生物合成遵循蛋氨酸 → SAM → ACC —(O2)→ 乙烯途径,其中ACC合成酶是乙烯生成的限速酶,因为该酶的出现使果实大量合成ACC,并进一步氧化生成乙烯.EFE是催化乙烯生物合成中ACC转化为乙烯的酶.

果蔬的生长发育与乙烯有什么关系?
简称MACC).MACC的生成可看成是调节乙烯形成的另一条途径.综上所述,乙烯在果蔬中的生物合成遵循蛋氨酸 → SAM → ACC —(O2)→ 乙烯途径,其中ACC合成酶是乙烯生成的限速酶,因为该酶的出现使果实大量合成ACC,并进一步氧化生成乙烯.EFE是催化乙烯生物合成中ACC转化为乙烯的酶.

隰县15193648826: 三羧酸循环中的限速酶 -
钟享小儿: 三羧酸循环中有三个限速酶,依次是:柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合体.

隰县15193648826: 生物学中三羧酸循环过程的限速酶 -
钟享小儿:[答案] 关键限速酶:柠檬酸合成酶 此外,三羧酸循环速度还受异柠檬酸脱氢酶,α-酮戊二酸脱氢酶的调控

隰县15193648826: 三羧酸循环的生理意义?三羧酸循环中的限速酶是什么?那一步反应是底物水平磷酸化,催化的酶是什么? -
钟享小儿:[答案] 三羧酸循环的生理意义?【1.三羧酸循环是三大营养素(糖类、脂类、氨基酸)的最终代谢通路,又是糖类、脂类、氨基酸代谢联系的枢纽.2.糖、脂肪和氨基酸代谢的联系通路,三羧酸循环另一重要功能是为其他合成代谢提供小...

隰县15193648826: 三羧酸循环的限制酶是哪些? -
钟享小儿: 三羧酸循环的限制酶有柠檬酸合成酶和异柠檬酸脱氢酶和酮戊二酸脱氢酶.其中主要限速酶是柠檬酸合成酶.

隰县15193648826: 计算三羧酸循环的能量及主要的反应酶 -
钟享小儿:[答案] 一摩尔乙酰辅酶A进入三羧酸循环生成1摩尔GTP,有3摩尔NADH和一摩尔FADH2,共10摩尔ATP.主要限速酶有柠檬酸合酶,异柠檬酸脱氢酶,α-酮戊二酸脱氢酶.

隰县15193648826: 阐述三羧酸循环(包括基本反应步骤和催化反应的酶,限速酶/关键酶及调控机制 -
钟享小儿: 呵呵,学生物竞赛的同学么? 三羧酸循环(TCA)也称为柠檬酸循环,是用于乙酰CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA与草酰乙酸缩合形成柠檬酸. 乙酰CoA进入由一连串反应构成的循环体系,被...

隰县15193648826: 生物化学中限速酶有哪些?求大神整理. -
钟享小儿: 推荐答案是错的 1,糖酵解的限速酶是——磷酸果糖激酶 2,三羧酸循环的限速酶是柠檬酸合酶 3,戊糖磷酸途径的限速酶是葡萄糖磷酸脱氢酶 有什么问题你再问吧

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网