关于狭义相对论中的公式推导

作者&投稿:全烟 (若有异议请与网页底部的电邮联系)
狭义相对论中尺子缩短的公式是怎么推导的~

狭义相对论中的公式推导:
一、洛仑兹坐标变换:X=γ(x-ut);Y=y;Z=z;T=γ(t-ux/c^2)。
1、设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0。
2、可令x=k(X+uT) (1)。又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K。
3、故有X=k(x-ut) (2)。对于y,z,Y,Z皆与速度无关,可得Y=y (3)。
4、Z=z (4)。将(2)代入(1)可得:x=k^2(x-ut)+kuT,即T=kt+((1-k^2)/(ku))x (5)。
5、(1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时由重合点发出一光信号,则对两系分别有x=ct,X=cT。
6、代入(1)(2)式得:ct=kT(c+u),cT=kt(c-u).两式相乘消去t和T得:k=1/sqr(1-u^2/c^2)=γ。将γ反代入(2)(5)式得坐标变换:X=γ(x-ut);Y=y;Z=z;T=γ(t-ux/c^2)。
二、速度变换:V(x)=(v(x)-u)/(1-v(x)u/c^2);V(y)=v(y)/(γ(1-v(x)u/c^2));V(z)=v(z)/(γ(1-v(x)u/c^2))。
1、V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2))=(dx/dt-u)/(1-(dx/dt)u/c^2)=(v(x)-u)/(1-v(x)u/c^2)。
2、同理可得V(y),V(z)的表达式。
三、尺缩效应:△L=△l/γ或dL=dl/γ。
B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ。
四、钟慢效应:△t=γ△τ或dt=dτ/γ。
由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T。
五、光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b)。光源与探测器在一条直线上运动。
1、B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为△t(a)=γ△t(b) (1)。
2、探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则△t(N)=(1+β)△t(a) (2)。
3、相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即ν(b)△t(b)=ν(a)△t(N) (3)。
4、由以上三式可得:ν(a)=sqr((1-β)/(1+β))ν(b)。
六、动量表达式:P=Mv=γmv,即M=γm。
1、dt=γdτ,此时γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c。
2、牛顿第二定律在伽利略变换下保持形势不变,即无论在哪个惯性系内牛顿第二定律都成立。
3、牛顿力学中,v=dr/dt,r在坐标变换下形式不变,只要将分母替换为一个不变量就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。
4、牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv。
七、相对论力学基本方程:F=dP/dt。
由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛顿第二定律的形式完全一样,但内涵不一样。
八、质能方程:E=Mc^2。
1、Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv=Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2*sqr(1-v^2/c^2)-mc^2=Mv^2+Mc^2(1-v^2/c^2)-mc^2=Mc^2-mc^2。
2、即E=Mc^2=Ek+mc^2
九、能量动量关系:E^2=(E0)^2+P^2c^2。
E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2。

光速不变性原理:
c=c+v=c-v
位移与时速公式:
s=vt
当物体A、B相对运动,且A、B上各有一个激光发射器,则A观察B完成速度为:
v'=根号下(c方+v方)
此时:
A:v=c s=2h B:v'=根号下(c方+v方) s=2h
把s消去 后就会得到钟慢公式
把t消去 后就会得到尺缩公式

 相对论公式及证明
  符号 单位 符号 单位
  坐标(x,y,z):m 力F(f): N
  时间t(T): s 质量m(M): kg
  位移r: m 动量p: kg*m/s
  速度v(u): m/s 能量E: J
  加速度a: m/s^2 冲量: N*s
  长度l(L): m 动能Ek: J
  路程s(S): m 势能Ep: J
  角速度ω: rad/s 力矩: N*m
  角加速度: rad/s^2α 功率P: W
  一:
  牛顿力学(预备知识)
  (一):质点运动学基本公式:(1)v=dr/dt,r=r0+∫rdt
  (2)a=dv/dt,v=v0+∫adt
  (注:两式中左式为微分形式,右式为积分形式)
  当v不变时,(1)表示匀速直线运动。
  当a不变时,(2)表示匀变速直线运动。
  只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。
  (二):质点动力学:
  (1)牛一:一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。
  (2)牛二:物体加速度与合外力成正比与质量成反比。
  F=ma=mdv/dt=dp/dt
  (3)牛三:作用在同一物体上的两个力,如果等大反向作用在同一直线上,则二力平衡。
  (4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。
  F=GMm/r^2,G=6.67259*10^(-11)m^3/(kg*s^2)
  动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)
  动量守恒:合外力为零时,系统动量保持不变。
  动能定理:W=∫Fds=Ek2-Ek1(合外力的功等于动能的变化)
  机械能守恒:只有重力做功时,Ek1+Ep1=Ek2+Ep2
  (注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。)
  二、狭义相对论力学
  (注:“γ”为相对论因子,γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度。)
  1.基本原理:(1)相对性原理:所有惯性系都是等价的。
  (2)光速不变原理:真空中的光速是与惯性系无关的常数。
  (此处先给出公式再给出证明)
  2.洛仑兹坐标变换:
  X=γ(x-ut)
  Y=y
  Z=z
  T=γ(t-ux/c^2)
  3.速度变换:
  V(x)=(v(x)-u)/(1-v(x)u/c^2)
  V(y)=v(y)/(γ(1-v(x)u/c^2))
  V(z)=v(z)/(γ(1-v(x)u/c^2))
  4.尺缩效应:△L=△l/γ或dL=dl/γ
  5.钟慢效应:△t=γ△τ或dt=dτ/γ
  6.光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b)
  (光源与探测器在一条直线上运动。)
  7.动量表达式:P=Mv=γmv,即M=γm
  8.相对论力学基本方程:F=dP/dt
  9.质能方程:E=Mc^2
  10.能量动量关系:E^2=(E0)^2+P^2c^2
  (注:在此用两种方法证明,一种在三维空间内进行,一种在四维时空中证明,实际上他们是等价的。)
  *******************************************************************************
  三、三维证明
  1.由实验总结出的公理,无法证明。
  2.洛仑兹变换:
  设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0。
  可令
  x=k(X+uT) (1).
  又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K.
  故有
  X=k(x-ut) (2).
  对于y,z,Y,Z皆与速度无关,可得
  Y=y (3).
  Z=z (4).
  将(2)代入(1)可得:x=k^2(x-ut)+kuT,即
  T=kt+((1-k^2)/(ku))x (5).
  (1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时,由重合点发出一光信号,则对两系分别有x=ct,X=cT.
  代入(1)(2)式得:ct=kT(c+u),cT=kt(c-u).两式相乘消去t和T得:
  k=1/sqr(1-u^2/c^2)=γ.将γ反代入(2)(5)式得坐标变换:
  X=γ(x-ut)
  Y=y
  Z=z
  T=γ(t-ux/c^2)
  3.速度变换:
  V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2))
  =(dx/dt-u)/(1-(dx/dt)u/c^2)
  =(v(x)-u)/(1-v(x)u/c^2)
  同理可得V(y),V(z)的表达式。
  4.尺缩效应:
  B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ
  5.钟慢效应:
  由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T.
  (注:与坐标系相对静止的物体的长度、质量和时间间隔称固有长度、静止质量和固有时,是不随坐标变换而变的客观量。)
  6.光的多普勒效应:(注:声音的多普勒效应是:ν(a)=((u+v1)/(u-v2))ν(b).)
  B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为
  △t(a)=γ△t(b) (1).
  探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则
  △t(N)=(1+β)△t(a) (2).
  相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即
  ν(b)△t(b)=ν(a)△t(N) (3).
  由以上三式可得:
  ν(a)=sqr((1-β)/(1+β))ν(b).
  7.动量表达式:(注:dt=γdτ,此时,γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c)
  牛顿第二定律在伽利略变换下,保持形势不变,即无论在那个惯性系内,牛顿第二定律都成立,但在洛伦兹变换下,原本简洁的形式变得乱七八糟,因此有必要对牛顿定律进行修正,要求是在坐标变换下仍保持原有的简洁形式。
  牛顿力学中,v=dr/dt,r在坐标变换下形式不变,(旧坐标系中为(x,y,z)新坐标系中为(X,Y,Z))只要将分母替换为一个不变量(当然非固有时dτ莫属)就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv.这就是相对论力学的基本量:相对论动量。(注:我们一般不用相对论速度而是用牛顿速度来参与计算)
  8.相对论力学基本方程:
  由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛顿第二定律的形式完全一样,但内涵不一样。(相对论中质量是变量)
  9.质能方程:
  Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv
  =Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2*sqr(1-v^2/c^2)-mc^2
  =Mv^2+Mc^2(1-v^2/c^2)-mc^2
  =Mc^2-mc^2
  即E=Mc^2=Ek+mc^2
  10.能量动量关系:
  E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2
  *******************************************************************************
  四、四维证明:
  1.公理,无法证明。
  2.坐标变换:由光速不变原理:dl=cdt,即dx^2+dy^2+dz^2+(icdt)^2=0在任意惯性系内都成立。定义dS为四维间隔,
  dS^2=dx^2+dy^2+dz^2+(icdt)^2 (1).
  则对光信号dS恒等于0,而对于任意两时空点的dS一般不为0。dS^2>0称类空间隔,dS^2<0称类时间隔,dS^2=0称类光间隔。相对论原理要求(1)式在坐标变换下形式不变,因此(1)式中存在与坐标变换无关的不变量,dS^2dS^2光速不变原理要求光信号在坐标变换下dS是不变量。因此在两个原理的共同制约下,可得出一个重要的结论:dS是坐标变换下的不变量。
  由数学的旋转变换公式有:(保持y,z轴不动,旋转x和ict轴)
  X=xcosφ+(ict)sinφ
  icT=-xsinφ+(ict)cosφ
  Y=y
  Z=z
  当X=0时,x=ut,则0=utcosφ+ictsinφ
  得:tanφ=iu/c,则cosφ=γ,sinφ=iuγ/c反代入上式得:
  X=γ(x-ut)
  Y=y
  Z=z
  T=γ(t-ux/c^2)
  3.4.5.6.略。
  7.动量表达式及四维矢量:(注:γ=1/sqr(1-v^2/c^2),下式中dt=γdτ)
  令r=(x,y,z,ict)则将v=dr/dt中的dt替换为dτ,V=dr/dτ称四维速度。
  则V=(γv,icγ)γv为三维分量,v为三维速度,icγ为第四维分量。(以下同理)
  四维动量:P=mV=(γmv,icγm)=(Mv,icM)
  四维力:f=dP/dτ=γdP/dt=(γF,γicdM/dt)(F为三维力)
  四维加速度:ω=/dτ=(γ^4a,γ^4iva/c)
  则f=mdV/dτ=mω
  8.略。
  9.质能方程:
  fV=mωV=m(γ^5va+i^2γ^5va)=0
  故四维力与四维速度永远“垂直”,(类似于洛伦兹磁场力)
  由fV=0得:γ^2mFv+γic(dM/dt)(icγm)=0(F,v为三维矢量,且Fv=dEk/dt(功率表达式))
  故dEk/dt=c^2dM/dt即∫dEk=c^2∫dM,即:Ek=Mc^2-mc^2
  故E=Mc^2=Ek+mc^2

狭义相对论中的公式推导:
一、洛仑兹坐标变换:X=γ(x-ut);Y=y;Z=z;T=γ(t-ux/c^2)。
1、设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0。
2、可令x=k(X+uT) (1)。又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K。
3、故有X=k(x-ut) (2)。对于y,z,Y,Z皆与速度无关,可得Y=y (3)。
4、Z=z (4)。将(2)代入(1)可得:x=k^2(x-ut)+kuT,即T=kt+((1-k^2)/(ku))x (5)。
5、(1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时由重合点发出一光信号,则对两系分别有x=ct,X=cT。
6、代入(1)(2)式得:ct=kT(c+u),cT=kt(c-u).两式相乘消去t和T得:k=1/sqr(1-u^2/c^2)=γ。将γ反代入(2)(5)式得坐标变换:X=γ(x-ut);Y=y;Z=z;T=γ(t-ux/c^2)。
二、速度变换:V(x)=(v(x)-u)/(1-v(x)u/c^2);V(y)=v(y)/(γ(1-v(x)u/c^2));V(z)=v(z)/(γ(1-v(x)u/c^2))。
1、V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2))=(dx/dt-u)/(1-(dx/dt)u/c^2)=(v(x)-u)/(1-v(x)u/c^2)。
2、同理可得V(y),V(z)的表达式。
三、尺缩效应:△L=△l/γ或dL=dl/γ。
B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ。
四、钟慢效应:△t=γ△τ或dt=dτ/γ。
由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T。
五、光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b)。光源与探测器在一条直线上运动。
1、B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为△t(a)=γ△t(b) (1)。
2、探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则△t(N)=(1+β)△t(a) (2)。
3、相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即ν(b)△t(b)=ν(a)△t(N) (3)。
4、由以上三式可得:ν(a)=sqr((1-β)/(1+β))ν(b)。
六、动量表达式:P=Mv=γmv,即M=γm。
1、dt=γdτ,此时γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c。
2、牛顿第二定律在伽利略变换下保持形势不变,即无论在哪个惯性系内牛顿第二定律都成立。
3、牛顿力学中,v=dr/dt,r在坐标变换下形式不变,只要将分母替换为一个不变量就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。
4、牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv。
七、相对论力学基本方程:F=dP/dt。
由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛顿第二定律的形式完全一样,但内涵不一样。
八、质能方程:E=Mc^2。
1、Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv=Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2*sqr(1-v^2/c^2)-mc^2=Mv^2+Mc^2(1-v^2/c^2)-mc^2=Mc^2-mc^2。
2、即E=Mc^2=Ek+mc^2
九、能量动量关系:E^2=(E0)^2+P^2c^2。
E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2。


光速为什么不能超越有质量的物体为什么不能达到光速
光速在宇宙中是一个恒定值,这个是普遍得出的结论,而且是宇宙中的最快的速度,也是一个基本的宇宙常量,很多人都希望可以超越光速,实现星际航行,但是这个本证明是不可能实现的,因为狭义相对论的公式锁定了这个梦想。 这是相对论质量公式决定的,一个具有静止质量的物体,速度越大,质量也会变得越大,如果其速度达到光速,...

狭义相对论中,为什么时间轴上的距离是用ct表示,而不是t?
这只是一种表示方法,ct是时间坐标。这里采用ct表示时间而不用t表示时间,只是为了在量纲和单位上,让时间坐标与空间坐标彼此相同。没有别的意思。

质能公式
质能公式是爱因斯坦于1905年提出的能量守恒定律,它表明质量和能量是可以相互转化的。这个公式也被称为E=mc²,其中E代表能量,m代表质量,c代表光速。1、质能公式的推导过程基于狭义相对论的两个基本原理:相对性原理和光速不变原理。相对性原理指出物理定律在所有惯性参考系中都是相同的,而光速不...

相对论的证明怎么证,书上的作业
狭义相对论力学:(注:γ=1\/sqr(1-u^2\/c^2),β=u\/c,u为惯性系速度。) (一)基本原理:(1)相对性原理:所有惯性系都是等价的。 (2)光速不变原理:真空中的光速是与惯性系无关的常数。 (此处先给出公式再给出证明) (二)洛仑兹坐标变换: X=γ(x-ut) Y=y Z=z T=γ(t-ux\/c^2) (三)速度...

求爱因斯坦的相对论(狭义相对论和广义相对论)
=== 广义相对论,是爱因斯坦于1915年以几何语言建立而成的引力理论,统合了狭义相对论和牛顿的万有引力定律,将引力改描述成因时空中的物质与能量而弯曲的时空,以取代传统对于引力是一种力的看法。简单理解为,有质量的物体压迫四维空间,使其产生扭曲,从而产生引力。广义相对论是基于狭义相对论的。如果...

相对论时间公式
随着相对论理论的发展,这种分类方法越来越显出其缺点——参考系是跟观察者有关的,以这样一个相对的物理对象来划分物理理论,被认为不能反映问题的本质。一般认为,狭义与广义相对论的区别在于所讨论的问题是否涉及引力(弯曲时空),即狭义相对论只涉及那些没有引力作用或者引力作用可以忽略的问题,而广义...

爱因斯坦的质能公式与狭义相对论,是否自相矛盾?
改变了人类对宇宙和自然的“常识性”观念,提出了“同时性的相对性”、“四维时空”等全新的概念。质能方程完全就是从狭义相对论中推导而出的,两者是不会存在矛盾的。质能方程推导最早发表于 《物体的惯性取决于它的能量含量?》,两者是相互联系的。

爱因斯坦相对论的内容
相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。 狭义相对论和广义相对的区别是,前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了...

什么是相对论效应?
相对论效应是指由于卫星钟和接收机钟所处的运动状态(运动速度和重力位)不同而引起卫星钟和接收机钟之间产生相对钟误差的现象。相对论是爱因斯坦创立的一个关于时间、空间和物质之间关系的理论。它分为狭义相对论和广义相对论两个部分。爱因斯坦于1905年发表了一篇非常有名的论文《论运动物体的电动力学》...

爱因斯坦的相对论
爱因斯坦在他1905年的论文《论动体的电动力学》中介绍了狭义相对论。 狭义相对论建立在下列的两个矛盾的古典力学的假设上: 狭义相对性原理(狭义协变性原理):一切的惯性参考系都是平权的,即物理规律的形式在任何的惯性参考系中是相同的。这意味着物理规律对于一位静止在实验室里的观察者和一个相对于实验室高速等速...

西昌市17330555001: 狭义相对论的问题,见下推导相对论那个著名的公式,质能方程公式E=mc2(E表示物体的能量,m表示物体的质量,c表示光速)我们知道,当我们向一个... -
都待口炎:[答案] E就是energy,能量的意思; K就是kinetic,运动的;运动引起的的意思

西昌市17330555001: 求速度合成公式(狭义相对论)如何推导 -
都待口炎: 单 位 符 号坐标:m(x,y,z)力:NF(f) 时间:st(T)质量:kgm(M) 位移:mr动量:kg*m/sp(P) 速度:m/sv(u)能量:JE 加速度:m/s^2a冲量:N*sI 长度:ml(L)动能:JEk 路程:ms(S)势能:JEp 角速度:rad/sω力矩:N*mM 角加速度:rad/s^2α功率:...

西昌市17330555001: 爱因斯坦的狭义相对论公式是什么? -
都待口炎:[答案] 狭义相对论力学 (注:γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度.) 1.基本原理:(1)相对性原理:物理定律在所有惯性系中都具有相同的数学形式.(2)光速不变原理:真空中的光速是与惯性系无关的常数.(此处先给出公式再给出推导) ...

西昌市17330555001: 狭义相对论的几个公式是不是非要用洛伦兹变换才能推出来?最好是高中方法 -
都待口炎: 狭义相对论的几个公式是指长度收缩和时间膨胀那几个公式?就我所遇到的书籍来说,都是从Lorentz equations推出来的,而且就应该从Lorentz equations推出来.其实用光速不变也可以.你就接受那几个公式就好,就算现在你会推导,你也并不会理解它们的含义.而关键实际上是如何导出Lorentz transformation.基本上有两种方法,一种是由光速不变和狭义相对原理;另一种是由时空的均匀和各向同性推出.

西昌市17330555001: 相对论动能公式如何推导狭义相对论中说物体动能为:mc^2/sqr(1 - u^2/c^2)这个是怎么来的?(不用E=mc^2)(最好不用微积分,用了也给分)那用了呢 -
都待口炎:[答案] 很久没有看物理,刚才看了一下,似乎楼主的动能公式有问题. 在狭义相对论中,物体的能量为:E=mc^2,而m=m0/√(1-u^2/c^2),这里u是运动速度,m0为静质量. 即E=m0*c^2/√(1-u^2/c^2),这不是指动能,而是指物理的全部能量(包括动能在内...

西昌市17330555001: 相对论动能公式如何推导 狭义相对论中说物体动能为:mc^2/sqr(1 - u^2/c^2)这个是怎么来的?(不用E=mc^2)(最好不用微积分) -
都待口炎:[答案] 这个不是动能的式子吧.这个应该是总能量的公式吧.

西昌市17330555001: 爱因斯坦在狭义相对论中推导能量公式 -
都待口炎: (1+x)^a的幂级数展开为: 1+ax+(a(a-1)/2!)*x^2+...+(a(a-1)...(a-n+1)/n!)*x^n....令a=-1/2,x=-v^2/c^2,即可得到结果.

西昌市17330555001: 相对论的质量和速度公式是怎样的 -
都待口炎: 相对论的质量和速度公式是m=m0/(v/u-1)=m0/√(1-v^2/c^2). 质量与速度关系式推导:S'系(其中静止一小球a',质量m0)相对S系(其中静止一小球a,质量m0)沿x轴正向以速度v运动,设a'相对S系的质量为m,根据系统的对称性,a相...

西昌市17330555001: 狭义相对论中能量和质量的关系推导简介,E=mcc是狭义相对论的还是广义相对论的公式质量能量可以互换是怎样来的? -
都待口炎:[答案] 狭义相对论提出的,质量和能量可互换即是建立在狭义相对论的两基本个假设基础上的:1、任一光源所发之球状光在一切惯性参照系中的速度都各向同性总为c 2、所有惯性参考系内的物理定律都是相同的.要推导的话,你必须先...

西昌市17330555001: 狭义相对论的速度和长度的相关公式 -
都待口炎:[答案] 狭义证明相对论公式及证明 符号 单位 符号 单位 坐标(x,y,z):m 力F(f):N 时间t(T):s 质量m(M):kg 位移r:m 动量p:kg*m/s 速度v(u):m/s 能量E:J 加速度a:m/s^2 冲量:N*s 长度l...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网