简答历史上的三次数学危机产生的根源与解决

作者&投稿:匡雷 (若有异议请与网页底部的电邮联系)
三次数学危机分别是什么?~

数学发展史上的三次危机
  1.毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2
的诞生。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。由两千多年后的数学家们建立的实数理论才消除它。
  2.第二次数学危机导源于微积分工具的使用。贝克莱一针见血地指出牛顿在对x^n(n是正整数)求导时既把△x不当做0看而又把△x当作0看是一个严重的自相矛盾,从而几乎使微积分停滞不前,后来还是柯西和魏尔斯特拉斯等人提出无穷小是一个无限向0靠近,但是永远不等于0的变量,这才把微积分重新稳固地建立在严格的极限理论基础上,从而消灭的这次数学危机!
  3.十九世纪下半叶,康托尔创立了著名的集合论。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……”可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。
  罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。
可以说,这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。
  危机产生后,数学家纷纷提出自己的解决方案。比如ZF公理系统。这一问题的解决只现在还在进行中。罗素悖论的根源在于集合论里没有对集合的限制,以至于让罗素能构造一切集合的集合这样“过大”的集合,对集合的构造的限制至今仍然是数学界里一个巨大的难题!

数学悖论与三次数学危机
陈基耿
摘要:数学发展从来不是完全直线式的,而是常常出现悖论。历史上一连串的
数学悖论动摇了人们对数学可靠性的信仰,数学史上曾经发生了三次数学危机。数学悖论的产生和危机的出现,不单给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望,促进了数学的繁荣。危机产生、解决、又产生的无穷反复过程,不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。
关键词:数学悖论;数学危机;毕达哥拉斯悖论;贝克莱悖论;罗素悖论

数学历来被视为严格、和谐、精确的学科,纵观数学发展史,数学发展从来不是完全直线式的,他的体系不是永远和谐的,而常常出现悖论。悖论是指在某一一定的理论体系的基础上,根据合理的推理原则,推出了两个互相矛盾的命题,或者是证明了这样一个复合命题,它表现为两个互相矛盾的命题的等价式[1]。数学悖论在数学理论中的发展是一件严重的事,因为它直接导致了人们对于相应理论的怀疑,而如果一个悖论所涉及的面十分广泛的话,甚至涉及到整个学科的基础时,这种怀疑情绪又可能发展成为普遍的危机感,特别是一些重要悖论的产生自然引起人们对数学基础的怀疑以及对数学可靠性信仰的动摇。数学史上曾经发生过三次数学危机,每次都是由一两个典型的数学悖论引起的。本文回顾了历史上发生的三次数学危机,重点介绍了三次数学危机对数学发展的重要作用。
1毕达哥拉斯悖论与第一次数学危机
1.1第一次数学危机的内容
公元前六世纪,在古希腊学术界占统治地位的毕达哥拉斯学派,其思想在当时被认为是绝对权威的真理,毕达哥拉斯学派倡导的是一种称为“唯数论”的哲学观点,他们认为宇宙的本质就是数的和谐[2]。他们认为万物皆数,而数只有两种,就是正整数和可通约的数(即分数,两个整数的比), 除此之外不再有别的数,即是说世界上只有整数或分数。
毕达哥拉斯学派在数学上的一项重大贡献是证明了毕达哥拉斯定理[3],也就是我们所说的勾股定理。勾股定理指出直角三角形三边应有如下关系,即a2=b2+c2,a和b分别代表直角三角形的两条直角边,c表示斜边。
然而不久毕达哥拉斯学派的一个学生希伯斯很快便发现了这个论断的问题。他发现边长相等的正方形其对角线长并不能用整数或整数之比来表示。假设正方形边长为1,并设其对角线长为d,依勾股定理应有d2=12+12=2,即d2=2,那么d是多少呢?显然d不是整数,那它必是两整数之比。希伯斯花了很多时间来寻找这两个整数之比,结果没找着,反而找到了两数不可通约性的证明[4],用反证法证明如下:设Rt△ABC,两直角边为a=b,则由勾股定理有c2=2a2,设已将a和c中的公约数约去,即a、c已经互素,于是c为偶数,a为奇数,不妨令c=2m,则有(2m)2=2a2,a2=2m2,于是a为偶数,这与前面已证a为奇数矛盾。这一发现历史上称为毕达哥拉斯悖论。
1.2第一次数学危机的影响
毕达哥拉斯悖论的出现,对毕达哥拉斯学派产生了沉重的打击,“数即万物”的世界观被极大的动摇了,有理数的尊崇地位也受到了挑战,因此也影响到了整个数学的基础,使数学界产生了极度的思想混乱,历史上称之为第一次数学危机。
第一次数学危机的影响是巨大的,它极大的推动了数学及其相关学科的发展。首先,第一次数学危机让人们第一次认识到了无理数的存在,无理数从此诞生了,之后,许多数学家正式研究了无理数,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类——实数,并建立了完整的实数理论[5],为数学分析的发展奠定了基础。再者,第一次数学危机表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演绎推理,并由此建立了几何公理体系。欧氏几何就是人们为了消除矛盾,解除危机,在这时候应运而生的[6]。第一次数学危机极大地促进了几何学的发展,使几何学在此后两千年间成为几乎是全部严密数学的基础,这不能不说是数学思想史上的一次巨大革命。 
2贝克莱悖论与第二次数学危机
2.1第二次数学危机的内容
公元17世纪,牛顿和莱布尼兹创立了微积分,微积分能提示和解释许多自然现象,它在自然科学的理论研究和实际应用中的重要作用引起人们高度的重视。然而,因为微积分才刚刚建立起来,这时的微积分只有方法,没有严密的理论作为基础,许多地方存在漏洞,还不能自圆其说。
例如牛顿当时是这样求函数y=xn的导数的[7]:(x+△x)n=xn+n•xn-1•△x+[n(n+1)/2]•xn-2•(△x)2+……+(△x)n,然后用自变量的增量△x除以函数的增量△y ,△y/△x=[(x+△x)n-xn ]/△x=n•xn-1+[n(n-1)/2] •xn-2•△x+……+n•x•(△x)n-2+(△x)n-1,最后,扔掉其中含有无穷小量△x的项,即得函数y=xn的导数为y′=nxn-1。
对于牛顿对导数求导过程的论述,哲学家贝克莱很快发现了其中的问题,他一针见血的指出:先用△x为除数除以△y,说明△x不等于零,而后又扔掉含有△x的项,则又说明△x等于零,这岂不是自相矛盾吗?因此贝克莱嘲弄无穷小是“逝去的量的鬼魂”,他认为微积分是依靠双重的错误得到了正确的结果,说微积分的推导是“分明的诡辩”。[8]这就是著名的“贝克莱悖论”。
确实,这种在同一问题的讨论中,将所谓的无穷小量有时作为0,有时又异于0的做法,不得不让人怀疑。无穷小量究竟是不是零?无穷小及其分析是否合理?贝克莱悖论的出现危及到了微积分的基础,引起了数学界长达两个多世纪的论战,从而形成了数学发展史中的第二次危机。
2.2第二次数学危机的影响[8]
第二次数学危机的出现,迫使数学家们不得不认真对待无穷小量△x,为了克服由此引起思维上的混乱,解决这一危机,无数人投入大量的劳动。在初期,经过欧拉、拉格朗日等人的努力,微积分取得了一些进展;从19世纪开始为彻底解决微积分的基础问题,柯西、外尔斯特拉斯等人进行了微积分理论的严格化工作。微积分内在的根本矛盾,就是怎样用数学的和逻辑的方法来表现无穷小,从而表现与无穷小紧密相关的微积分的本质。在解决使无穷小数学化的问题上,出现了罗比达公理:一个量增加或减少与之相比是无穷小的另一个量,则可认为它保持不变。而柯西采用的ε-δ方法刻画无穷小,把无穷小定义为以0为极限的变量,沿用到今,无穷小被极限代替了。后来外尔斯特拉斯又把它明确化,给出了极限的严格定义,建立了极限理论,这样就使微积分建立在极限基础之上了。极限的ε-δ定义就是用静态的ε-δ刻画动态极限,用有限量来描述无限性过程,它是从有限到无限的桥梁和路标,它表现了有限与无限的关系,使微积分朝科学化、数学化前进了一大步。极限理论的建立加速了微积分的发展,它不仅在数学上,而且在认识论上也有重大的意义。后来在考查极限理论的基础中,经过代德金、康托尔、海涅、外尔斯特拉斯和巴门赫等人的努力,产生了实数理论;在考查实数理论的基础时,康托尔又创立了集合论。这样有了极限理论、实数理论和集合论三大理论后,微积分才算建立在比较稳固和完美的基础之上了,从而结束了二百多年的纷乱争论局面,进而开辟了下一个世纪的函数论的发展道路。
3罗素悖论与第三次数学危机
3.1第三次数学危机的内容
在前两次数学危机解决后不到30年即19世纪70年代,德国数学家康托尔创立了集合论,集合论是数学上最具革命性的理论,初衷是为整个数学大厦奠定坚实的基础。1900年,在巴黎召开的国际数学家会议上,法国大数学家庞加莱兴奋的宣布[9]:“我们可以说,现在数学已经达到了绝对的严格。”然而,正当人们为集合论的诞生而欢欣鼓舞之时,一串串数学悖论却冒了出来,又搅得数学家心里忐忑不安,其中英国数学家罗素1902年提出的悖论影响最大,“罗素悖论”的内容是这样的:设集合B是一切不以自身为元素的集合所组成的集合,问:B是否属于B?若B属于B,则B是B的元素,于是B不属于自身,即B不属于B;反之,若B不属于B,则B不是B的元素,于是B属于自己,即B属于B。这样,利用集合的概念,罗素导出了——集合B不属于B当且仅当集合B属于B时成立的悖论。之后,罗素本人还提出了罗素悖论的通俗版本,即理发师悖论[10]。理发师宣布了这样一条原则:他只为村子里不给自己刮胡子的人刮胡子。那么现在的问题是,理发师的胡子应该由谁来刮?。如果他自己给自己刮胡子,那么他就是村子里给自己刮胡子的人,根据他的原则,他就不应给自己刮胡子;如果他不给自己刮胡子,那么他就是村子里不给自己刮胡子的人,那么又按他的原则他就该为自己刮胡子。同样有产生了这样的悖论:理发师给自己刮胡子当且仅当理发师不给自己刮胡子。这就是历史上著名的罗素悖论。罗素悖论的出现,动摇了数学的基础,震撼了整个数学界,导致了第三次数学危机。
3.2第三次数学危机的影响
罗素悖论的出现,动摇了本来作为整个数学大厦的基础——集合论,自然引起人们对数学基本结构有效性的怀疑。罗素悖论的高明之处,还在于它只是用了集合的概念本身,而并不涉及其它概念而得出来的,使人们更是无从下手解决。罗素悖论导致的第三次数学危机,使数学家们面临着极大的困难。
数学家弗雷格在他刚要出版的《论数学基础》卷二末尾就写道[11]:“对一位科学家来说,没有一件比下列事实更令人扫兴:当他工作刚刚完成的时候,它的一块基石崩塌下来了。在本书的印刷快要完成时,罗素先生给我的一封信就使我陷入这种境地。”可见第三次数学危机使人们面临多么尴尬的境地。然而科学面前没有人会回避,数学家们立即投入到了消除悖论的工作中,值得庆幸的是,产生罗素悖论的根源很快被找到了,原来康托尔提出集合论时对“集合”的概念没有做必要的限制,以至于可以构造“一切集合的集体”这种过大的集合而产生了悖论。
为了从根本上消除集合论中出现的各种悖论,特别是罗素悖论,许多数学家进行了不懈的努力。如以罗素为主要代表的逻辑主义学派[12],提出了类型论以及后来的曲折理论、限制大小理论、非类理论和分支理论,这些理论都对消除悖论起到了一定的作用;而最重要的是德国数学家策梅罗提出的集合论的公理化,策梅罗认为,适当的公理体系可以限制集合的概念,从逻辑上保证集合的纯粹性,他首次提出了集合论公理系统,后经费兰克尔、冯•诺伊曼等人的补充形成了一个完整的集合论公理体系(ZFC系统)[5],在ZFC系统中,“集合”和“属于”是两个不加定义的原始概念,另外还有十条公理。ZFC系统的建立,使各种矛盾得到回避,从而消除了罗素悖论为代表的一系列集合悖论,第三次数学危机也随之销声匿迹了。
尽管悖论消除了,但数学的确定性却在一步一步丧失,现代公理集合论一大堆公理是在很难说孰真孰假,可是又不能把它们一古脑消除掉,它们跟整个数学是血肉相连的,所以第三次危机表面上解决了,实质上更深刻地以其它形式延续[7]。为了消除第三次数学危机,数理逻辑也取得了很大发展,证明论、模型论和递归论相继诞生,出现了数学基础理论、类型论和多值逻辑等。可以说第三次数学危机大大促进了数学基础研究及数理逻辑的现代性,而且也因此直接造成了数学哲学研究的“黄金时代”。
4结语
历史上的三次数学危机,给人们带来了极大的麻烦,危机的产生使人们认识到了现有理论的缺陷,科学中悖论的产生常常预示着人类的认识将进入一个新阶段,所以悖论是科学发展的产物,又是科学发展源泉之一。第一次数学危机使人们发现无理数,建立了完整的实数理论,欧氏几何也应运而生并建立了几何公理体系;第二次数学危机的出现,直接导致了极限理论、实数理论和集合论三大理论的产生和完善,使微积分建立在稳固且完美的基础之上;第三次数学危机,使集合论成为一个完整的集合论公理体系(ZFC系统),促进了数学基础研究及数理逻辑的现代性。
数学发展的历史表明对数学基础的深入研究、悖论的出现和危机的相对解决有着十分密切的关系,每一次危机的消除都会给数学带来许多新内容、新认识,甚至是革命性的变化,使数学体系达到新的和谐,数学理论得到进一步深化和发展。悖论的存在反映了数学概念、原理在一定历史阶段会存在很多矛盾,导致人们的怀疑,产生危机感,然而事物就是在不断产生矛盾和解决矛盾中逐渐发展完善起来的,旧的矛盾解决了,新的矛盾还会产生,而就是在其过程中,人们便不断积累了新的认识、新的知识,发展了新的理论。数学家对悖论的研究和解决促进了数学的繁荣和发展,数学中悖论的产生和危机的出现,不单是给数学带来麻烦和失望,更重要的是给数学的发展带来新的生机和希望。
数学中悖论和危机的历史也说明了这一点:已有的悖论和危机消除了,又产生新的悖论和危机。但是人的认识是发展的,悖论或危机迟早都能获得解决。“产生悖论和危机,然后努力解决它们,而后又产生新的悖论和危机。”这是一个无穷反复的过程,也就不断推动着数学的发展,这个过程也是数学思想获得重要发展的过程。

参考文献:
[1] 师琼,王保红.悖论及其意义[J].中共山西省委党校学报,2005,28(4):76~78.
[2] 赵院娥,乔淑莉.悖论及其对数学发展的影响[J].延安大学学报(自然科学版),2004,2(1):21~25.
[3] 李春兰.试论数学史上的第一次危机及其影响[J].内蒙古师范大学学报(教育科学版),2006,19(1):88~90.
[4] 梁伟.试析悖论与数学史上三次危机及其方法论意义[J].科技资讯,2005,(27):187~188.
[5] 王方汉.历史上的三次数学危机[J].数学通报,2002,(5):42~43.
[6] 胡作玄.第三次数学危机[M].四川:四川人民出版社,1985,1~108.
[7] 黄燕玲,代贤军.悖论对数学发展的影响[J].河池师专学报,2003, 23(4):62~64.
[8] 周勇.第2次数学危机的影响和启示[J].数学通讯,2005,(13):47.
[9] 王庚.数学怪论[A].数学文化与数学教育——数学文化报告集[C].北京:科学出版社,2004.13~25.
[10] 兰林世.三次数学危机与悖论[J].集宁师专学报,2003,25(4):47~49.
[11] 王风春.数学史上的三次危机[J].上海中学数学,2004,(6):42~43.
[12] 张怀德.数学危机与数学发展[J].甘肃高师学报,2004,9(2):60~62.

论数学史上的三次数学危机 学号:100521026 姓名:付东群 摘要:数学发展从来不是完全直线,而是常常出现悖论。历史上一连串的数学 悖论动摇了人们对数学的可靠性的信仰,数学史上曾经发生了三次数学危机。数 学悖论的产生和危机的出现, 不单给数学带来麻烦和失望,更重要的是给数学的 发展带来新的生机和希望,促进了数学的繁荣。危机的产生、解决,又产生的无 穷反复过程, 不断推动着数学的发展,这个过程也是数学思想获得重要发展的过 程。 关键词:数学危机;无理数;微积分;集合论;悖论; 引言:数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一 帆风顺,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至面临危机。 数学史也是数学家们克服困难和战胜的斗争记录。无理数的发现,微积分和非欧 集合的创立, 乃至费马定理的证明......这样的例子在数学史上不胜枚举,他们 可以帮助人们了解数学创造的完美过程。 对这种创造的过程的了解则可以使我们 从前人的探索与奋斗中西区教益,获得鼓舞和增强信心。 第一次数学危机(无理数的产生) 第一次危机发生在公元前 580~568 年之间的古希腊,数学家毕达哥拉斯建立 了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知 识保密,所有发明创造都归于学派领袖。 (一)、危机的起源 毕达哥拉斯学派认为“万物皆数” ,这个数就是整数,他们确定数学的目的是 企图通过数的奥秘来探索宇宙的永恒真理, 并且认为宇宙间的一切现象都能归结 为整数或整数之比。后来这个学派发现了毕达哥拉斯学定理(勾股定理) ,他们 认为这是一件很了不起的事, 然而了不起的事后面还有更了不起的事。毕达哥拉 斯学派的希帕索斯从毕达哥拉斯定理出发, 发现边长为 1 的正方形对角线不能用 整数来表示, 这就产生了这个无理数。 这无疑对 “万物皆数” 产生了巨大的冲击, 由此引发了第一次数学危机【1】 。 (二) 、危机的解决 由无理数引发的第一次数学危机对古希腊的数学观点产生了极大的冲击。 动摇 数学基础的第一次危机并没有很轻易地被解决。大约到了公元前 370 年,这个矛 盾终于被毕达哥拉斯学派的欧多克斯通过给比例下新定义的方法巧妙的处理了。 但这个问题直到 19 世纪的戴德金和康托尔等人建立了现代实数理论才算彻底解 决了。 (三) 、对数学发展的意义 第一次危机的产生最大的意义是导致了无理数地产生, 打破了长时间的禁锢数学 发展的枷锁。 这次数学危机也使整数的权威地位开始动摇,而几何学的身份升高 了,在以后的一两千年中,几何支撑了数学的发展。同时危机也表明,直觉和经 验不一定靠得住,推理证明才是最可靠的,从此希腊人开始重视演译推理,并由 此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命 第二次数学危机(微积分工具) 18 世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分 数学家对这一理论的可靠性是毫不怀疑的。但是不管是牛顿,还是莱布尼茨所创 立的微积分理论都是不严格的。 (一) 、危机的起源 因为牛顿和莱布尼茨的微积分理论是建立在无穷小分析之上的, 但他们对作为 基本概念的无穷小量的理解与应用是混乱的。1734 年,英国哲学家、大主教贝 克莱发表《分析学家或者向一个不信正教数学家的进言》 ,矛头指向微积分的基 础——无穷小的问题,提出了所谓贝克莱悖论。笼统的说,贝克莱悖论可以表述 为“无穷小量究竟是否为 0”的问题。这一问题的提出在当时的数学界引起了一 定的混乱,由此导致了第二次数学危机的产生【2】 。 (二) 、危机的解决 为了解决第二次数学危机, 数学家们开始在严格化基础上重建微积分,其中贡 献最大的是法国数学家柯西,他在《分析教程》和《无穷小计算讲义》中给出了 数学分析一系列基本概念的精确定义。例如:他给出了精确的极限定义,然后用 极限定义连续性、导数、微分,定积分和无穷级数的收敛性。后来,魏尔斯特拉 斯及其追随者们实现了分析的算术化。至此,数学史上的第二次危机已经克服, 数学的整个结构已被恢复【3】 。 (三) 、对数学发展的意义 牛顿和莱布尼茨创立的微积分理论虽然存在一定的缺陷, 但微积分仍然很受重 视,被广泛地应用于物理学、力学、天文学中。危机爆发后,经过柯西等人的不 懈努力,严格的极限理论建立起来了,为微积分奠定了理论基础。微积分理论的 建立在数学史上有深远的意义。 一方面它消除了微积分长期以来的神秘性,使数 学以及其他科学冲破了宗教的束缚,为以后的独立发展创造了条件;另一方面, 微积分理论基础的建立加速了微积分的发展,产生了复变函数、实变函数、微分 方程、变分学、积分方程、泛函分析等学科,形成了庞大的分析体系,成为数学 的重要分支【4】 。 第三次数学危机(罗素悖论) 到 19 世纪末,康托尔的集合论已经得到数学家的承认,集合论也成功地应用 到其他的数学分支。集合论是数学的基础,由于集合论的使用,数学似乎已经达 到了无懈可击的地步。但是,正当数学家们熟练地应用集合论时,数学帝国又爆 发了一次危机。 (一) 、危机的起源 康托尔集合论的创造性成果为数学提供了广泛的理论基础,所以在 1900 年巴 黎国际数学会议上,法国大数学家庞加莱宣称: “数学的严格性,看来直到今天 才可以说实现了。 ”但事隔两年后,却传出一个惊人的消息:集合论的概念本身 出现了矛盾。 这就是英国数学家罗素提出的著名的悖论,罗素悖论的内容用一句 话表述就是:所有不以自己为元素的集合组成一个集合,记为 A;则有集合 A 包 含 A 等价于集何 A 不包含 A 这样的悖理【5】 罗素悖论一提出就在当时的数学界和 。 逻辑学界引起了极大的震动。 这一悖论引起的巨大反响则导致了数学史上的第三 次危机。 (二) 、危机的解决 危机产生后,数学家纷纷提出自己的解决方案。其中以罗素为主要代表的逻 辑主义学派,提出了类型论以及后来的曲折理论、限制大小理论、非类理论和分 支理论, 这些理论都对消除悖论起到了一定的作用;而最重要的是德国数学家策 梅罗提出的集合论的公理化, 策梅罗认为, 适当的公理体系可以限制集合的概念, 从逻辑上保证集合的纯粹性,他首次提出了集合论公理系统,后经费兰克尔、 冯·诺伊曼等人的补充形成了一个完整的集合论公理体系(ZFC 系统)【6】,ZFC 系统的建立, 使各种矛盾得到回避,从而消除了罗素悖论为代表的一系列集合悖 论,第三次数学危机表面上解决了。 (三)、对数学发展的意义 集合论公理系统的建立, 成功排除了集合论中出现的悖论,从而比较圆满地解 决了第三次数学危机。 但在另一方面, 罗素悖论对数学而言有着更为深刻的影响, 它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前, 导致了数学 家对数学基础的研究。为了消除第三次数学危机,数理逻辑也取得了很大发展, 证明论、 模型论和递归论相继诞生, 出现了数学基础理论、 类型论和多值逻辑等。 可以说第三次数学危机大大促进了数学基础研究及数理逻辑的现代性, 而且也直 接造成了数学哲学研究的“黄金时代”。 四、悖论与数学发展 历史上的三次数学危机,给数学界带来了极大的麻烦,危机的产生使数学家 认识到了现有理论的缺陷, 科学中悖论的产生常常预示着人类的认识将进入一个 新阶段,所以悖论是科学发展的产物,又是科学发展动力之一。希帕索斯悖论、 贝克莱悖论以及罗素悖论分别引发了数学发展史上的三次危机。然而,这三次危 机又不同程度的促进了数学的发展。第一次数学危机使人们发现无理数,建立了 完整的实数理论, 欧氏几何也应运而生并建立了几何公理体系;第二次数学危机 促成了分析基础理论的完善与集合论的创立; 第三次数学危机促成了数理逻辑的 发展与一批现代数学的产生,使集合论成为一个完整的集合论公理体系。 总结:数学史上的三次危机,虽给数学的发展带来了空前的困难,但是给数学 以极大的推动。 这三次危机的解决都丰富了数学理论, 推动了数学的严密化发展。 经历了历史上三次数学危机的数学界,是否从此就与数学危机“绝缘”呢?不! 因为人类的认识在各个历史阶段中的局限性和相对性, 在人类的认识的各个历史 阶段所形成的各个理论系统中, 本来就具有悖论产生的可能性,但在人类认识世 界的深化过程中同样具有排除悖论的可能性,数学大厦的基础任然存在着裂缝, 并不如想象中的那样完美与和谐。因此,我们要正确的看待数学史所产生的危机 和他对数学等学科发展所起的巨大作用。 参考文献: 【1】王保红.数学三次危机的认识论意义[J].山西教育学院学报,2001,第 4 期:106-107. 【2】董海瑞.漫谈数学史上的三次危机[J].太原大学教育学院学报,2007 年 6 月,83(25). 【3】陈云波.数学发展史上的三次危机[J].教学与管理,2004. 【5】王桂芹.数学在克服危机中前进[J].天中学刊,2000,15(5) :65-67. 【4】赵院娥.乔淑莉.悖论及其对数学发展的影响[J]。延安大学学报 2004,2(1) :21-25 【6】聂铭.三次数学危机的产生与解决[J].六盘水师专学报,2011,13(4).

第一次数学危机是无理数的诞生,发现根号2不能写成两个整数相除,最终无理数被纳入了实数范围。
第二次数学危机源于微积分工具的使用,由于定义不严格,无穷小量这些概念引起争论,最终建立了实数理论,极限理论,使得数学分析有了严格基础。
第三次数学危机是关于集合论,即著名的罗素悖论,集合的定义受到了攻击.最终通过不同的公理化系统解决,使数理逻辑等学科得到发展。
历史上的三次数学危机,给人们带来了极大的麻烦,危机的产生使人们认识到了现有理论的缺陷,科学中悖论的产生常常预示着人类的认识将进入一个新阶段,所以悖论是科学发展的产物,又是科学发展源泉之一.第一次数学危机使人们发现无理数,建立了完整的实数理论,欧氏几何也应运而生并建立了几何公理体系;第二次数学危机的出现,直接导致了极限理论、实数理论和集合论三大理论的产生和完善,使微积分建立在稳固且完美的基础之上;第三次数学危机,使集合论成为一个完整的集合论公理体系(ZFC系统),促进了数学基础研究及数理逻辑的现代性.


请问中国古代数学的发展受哪些因素影响,具体发展环境是怎样的一种状态...
绝不是所有的问题都可以归结为线性方程组或一个未知量的多项式方程来求解。实际上,可以说更大量的实际问题如果能化为代数方程求解的话,出现的将是含有多个未知量的高次方程组。多元高次方程组的求解即使在今天也绝非易事。历史上最早对多元高次方程组作出系统处理的是中国元代数学家朱世杰。朱世杰的《...

有哪些伟大数学家的故事(短一点)
蜗牛的趣味名人

你知道关于数学的小故事吗?
4、华罗庚上中学时,在一次数学课上,老师给同学们出了一道着名的难题:“有一个数,3个3个地数,还余2;5个5个地数,还余3;7个7个地数,还余2,请问这个得数是多少?”大家正在思考时,华罗庚站起来说:“23”他的回答使老师惊喜不已,并得到老师的表扬。 5、公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟...

数学故事,尽量短一些。别太幼稚,最好是数学历史或数学家的故事,回答...
文学系里的数学已经容易很多了,结果他的数学还是不及格。有趣的是,他同时在法国的数学研究期刊《纯数学与应用数学杂志》发表《五次方方程式 解的思索》,震惊了数学界。 在人类历史上,第三世纪的希腊数学家就发现一次方程与二次方程的解法,之后,多少一流数学家埋首苦思四次方程以上到n次方的解法,始终不得其解。

关于数学家高斯的故事有哪些
关于数学家高斯的故事有:1、高斯7岁那年开始上学,一天,数学老师布置了一道题,1+2+3···这样从1一直加到100等于多少。高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案。高斯非常坚定,说出答案就是5050,布特纳对他刮目相看。2、11岁的高斯进入了文科学校,他在新的学校...

勾股定理起源?
来源见下面:在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期...

数学名人
国内外的数学名人,历史上的数学名人的故事和他们的贡献。(如华罗庚、陈景润等中外数学名人的故事)再加一道题:关于数学的笑话与故事和对联... 国内外的数学名人,历史上的数学名人的故事和他们的贡献。(如华罗庚、陈景润等中外数学名人的故事)再加一道题:关于数学的笑话与故事和对联 展开 ...

中国的数学在历史上的进程是怎么样的?
回答量:1.9万 采纳率:71% 帮助的人:7628万 我也去答题访问个人页 关注 展开全部 中国数学发展史 中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。 (一)属于算术方面的材料 大约...

名人数学故事
欧拉是古往今来最多产的数学家,据说他留下的宝贵的文化遗产够当时的圣彼得堡所有的印刷机同时忙上几年。 欧拉作为历史上对数学贡献最大的四位数学家之一(另外三位是阿基米德、牛顿、高斯),被誉为"数学界的莎士比亚"。 高斯(1777~1855) 高斯是德国数学家、物理学家和天文学家,英国皇家学会会员。 高斯是一个...

关于数学的小故事
详情请查看视频回答

肃州区19543039392: 引起数学的第三次危机的根本原因是什么? -
运泻热淋:[答案] 数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度.这次危机是由于在康托的一般集合理论的边缘发现悖论造成的.由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的...

肃州区19543039392: 每次数学危机都是有什么问题引起的? -
运泻热淋: 第一次数学危机是由不可公度的线段引起的,导致了无理数的产生;第二次数学危机是无穷小悖论,导致了分析的严格化;第三次数学危机是罗素悖论,也就是所谓的集合论悖论,指出了集合论基础的缺陷.

肃州区19543039392: 什么是数学的第三次危机?能具体点吗? -
运泻热淋:[答案] 【数学的第三次危机】 在科学技术中,当一种反常现象与通常理论发生冲突时,就会出现理论方面的危机.在数学发展史上,已经经历了三次危机: 公元前5世纪,由于古希腊毕达哥拉斯学派的希帕索斯发现了无理数而与该学派所信奉的"一切数皆...

肃州区19543039392: 数学经历过几次危机,分别是什么~ -
运泻热淋:[答案] 数学史上的三次危机 无 理 数 的 发 现 —— 第 一 次 数 学 危 机 大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论.当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和...

肃州区19543039392: 数学史上的危机是什么? -
运泻热淋:[答案] 温馨提示 数学的发展史中,并不是那么一帆风顺的,其中历史上曾发生过三大危机,危机的发生促使了数学本生的发展:第一次危机发生在公元前580~568年之间的古希腊;第二次数学危机发生在十七世纪.第三次数学危机

肃州区19543039392: 简述数学史上的三次数学危机及其对数学发展的影响 -
运泻热淋:[答案] 数学悖论与三次数学危机 陈基耿 摘要:数学发展从来不是完全直线式的,而是常常出现悖论.历史上一连串的 数学悖论动摇了人们对数学可靠性的信仰,数学史上曾经发生了三次数学危机.数学悖论的产生和危机的出现,不单给数学带来麻烦和失望,...

肃州区19543039392: 简述三次数学危机的内容及解决情况.《数学的观念、思想与方法》 思考题. -
运泻热淋:[答案] 第一次数学危机是无理数的诞生,发现根号2不能写成两个整数相除,最终无理数被纳入了实数范围第二次数学危机源于微积分工具的使用,由于定义不严格,无穷小量这些概念引起争论,最终建立了实数理论,极限理论,使得数学分析...

肃州区19543039392: 数学历史上的三次危机是什么? -
运泻热淋: 第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派.这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖.当时人们对有理数的认识还很有限,对于无理数...

肃州区19543039392: 三次数学危机是什么? -
运泻热淋: 数学发展史上的三次危机 1.毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家.他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派.由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石.而“一...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网