什么是质谱,质谱分析原理是什么

作者&投稿:謇曹 (若有异议请与网页底部的电邮联系)
什么是质谱,质谱分析原理是什么?~

质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。

质谱分析原理:将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。

质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。
质谱分析是一种测量离子质荷比(质量-电荷比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。
质谱技术是一种鉴定技术,在有机分子的鉴定方面发挥非常重要的作用。它能快速而极为准确地测定生物大分子的分子量,使蛋白质组研究从蛋白质鉴定深入到高级结构研究以及各种蛋白质之间的相互作用研究。

质谱分析原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。
在质量分析器中,再利用电场或磁场使不同荷质比的离子在空间上或时间上分离,或是通过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。

扩展资料:
在典型的质谱法中,可以是固体,液体或气体的样品被电离,例如用电子轰击它。这可能导致一些样品的分子破碎成带电的碎片。然后,这些离子根据其质荷比被分离,通常通过加速它们并使其经受电场或磁场:相同质荷比的离子将经历相同数量的偏转。
离子通过能够探测带电粒子的机制被探测到,例如一个电子倍增管。结果被显示为作为质荷比的函数的已经探测离子的相对丰度的频谱。样品中的原子或分子可以通过将已知质量与鉴定的质量相关联或通过特征分解模式来鉴定。

质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。

质谱分析原理:将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。

质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。

扩展资料

相关仪器:

质谱仪一般由四部分组成:

进样系统——按电离方式的需要,将样品送入离子源的适当部位;

离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束。

质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;

检测器——用来接受、检测和记录被分离后的离子信号。

一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。

参考资料来源:百度百科-质谱

参考资料来源:百度百科-质谱法



质朴是一种鉴定微粒质量的谱法,质谱分析的原理是利用电场将不同质量的微粒区分开。

一、质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。

在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。质谱仪器一般由样品导入系统、离子源、质量分析器、检测器、数据处理系统等部分组成。

二、质谱分析的原理:使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器。

利用电场和磁场使发生相反的速度色散——离子束中速度较慢的离子通过电场后偏转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道便相交于一点。

与此同时,在磁场中还能发生质量的分离,这样就使具有同一质荷比而速度不同的离子聚焦在同一点上,不同质荷比的离子聚焦在不同的点上,将它们分别聚焦而得到质谱图,从而确定其质量。

扩展资料

利用运动离子在电场和磁场中偏转原理设计的仪器称为质谱计或质谱仪。

前者指用电子学方法检测离子,而后者指离子被聚焦在照相底板上进行检测。质谱法的仪器种类较多,根据使用范围,可分为无机质谱仪和有机质谱计。常用的有机质谱计有单聚焦质谱计、双聚焦质谱计和四极矩质谱计。目前后两种用得较多,而且多与气相色谱仪和电子计算机联用。

质谱计必须在高真空下才能工作。用以取得所需真空度的阀泵系统,一般由前级泵(常用机械泵)和油扩散泵或分子涡轮泵等组成。扩散泵能使离子源保持在10~10毫米汞柱的真空度。有时在分析器中还有一只扩散泵,能维持10~10毫米汞柱的真空度。

参考资料来源:百度百科——质谱

参考资料来源:百度百科——质谱法



质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。

质谱分析是一种测量离子质荷比(质量-电荷比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。

扩展资料:

质谱技术是一种鉴定技术,在有机分子的鉴定方面发挥非常重要的作用。它能快速而极为准确地测定生物大分子的分子量,使蛋白质组研究从蛋白质鉴定深入到高级结构研究以及各种蛋白质之间的相互作用研究。

随着质谱技术的发展,质谱技术的应用领域也越来越广。由于质谱分析具有灵敏度高,样品用量少,分析速度快,分离和鉴定同时进行等优点,因此,质谱技术广泛的应用于化学,化工,环境,能源,医药,运动医学,刑事科学技术,生命科学,材料科学等各个领域。

质谱分析法对样品有一定的要求。进行GC-MS分析的样品应是有机溶液,水溶液中的有机物一般不能测定,须进行萃取分离变为有机溶液,或采用顶空进样技术。有些化合物极性太强,在加热过程中易分解,例如有机酸类化合物,此时可以进行酯化处理,将酸变为酯再进行GC-MS分析,由分析结果可以推测酸的结构。

参考资料来源:百度百科-质谱



质谱是什么鬼?

质谱是将化合物电离并测定生成的带电粒子质量(质荷比)的仪器,也可简单的说:质谱混合物中的单个化合物进行分析的仪器。

质谱分析原理是?????

下图是一张简易的质谱结构图,在硬件上,质谱仪器主要由3部分组成,其中离子源部分将化合物转化成带电离子,质量分析器筛选出目标离子,检测器采集信号并记录交由软件处理成质谱图。

下面以傅里叶变换离子回旋共振质谱仪(FT-ICR-MS)为例介绍质谱的实际工作原理。

首先是有机样本的引入和离子化的过程,下图中样本是通过液体引入,通常前端为高效液相色谱(HPLC)或者超高效液相色谱(UPLC),即所谓的液质联用技术。图中使用的电喷雾离子源(ESI),液体样本在经过附带高电压的不锈钢毛细管后,形成带电荷的喷雾;在高温惰性气体加热下,溶剂挥发,电荷转移至样本中化合物上,得到带电粒子。

接下来,带电粒子在强电场的作用下聚焦并传输至质量分析器中,在此过程中,未电离的中性粒子会被筛选掉。

带电粒子进入质量分析器后,受到电场和磁场的双重作用下运动,在调节相应的电场和磁场参数可以筛选出目标化合物粒子。FT-ICR质谱的分析器是一个具有均匀超导磁场的空腔,离子在垂直于磁场的圆形轨道上作回旋运动,回旋频率仅与磁场强度和离子的质荷比有关。

当回旋的离子束接近一对捕集板时,捕集板上会检测到影像电流信号。这种信号被称为自由感应衰减(FID),是一种由许多重叠的正弦波组成的瞬态或干涉图。

上述的原始数据通过傅里叶变换,我们可以从这些信号数据中萃取出有用的信号形成质谱图。

最后得到的便是原始的质谱图,其横坐标是分子量(质荷比),纵坐标为相对丰度(以图中强度最高的峰为基峰,记为100%)。由于同为素的普遍存在,所以各检测粒子均伴随强度较弱的若干同位素峰。此外,在离子化过程中以及传输中,化合物结构可能被破坏产生些许碎片峰。

因为在许多实际样本分析过程中,单级质谱图得到的信息不足以确定目标物是否为目标物,为提高结果准确性,常常使用串联质谱甚至多级质谱获取更多化合物碎片信息,下面是竹桃霉素(Oleandomycin)的一级、二级和三级质谱图。

资料参考:质谱应用



目前,质谱分析法 ( mass spectrometric method) 是测量同位素丰度最有效的方法。质谱仪根据带电原子和分子在磁场或电场中具有不同的运动,将它们相互分离。由于质谱仪的种类多样,用途又非常广泛,因此,就不一一进行介绍下面仅简单介绍一下质谱分析的基本原理,详细论述可参考 Brand ( 2002) 。

质谱仪一般可分为四个重要的组成部分: ① 进样系统; ② 离子源; ③ 质量分析器; ④ 离子检测器 ( 图 1. 8) 。

图 1. 8 用于稳定同位素测量的气源质谱仪示意图

( 1) 进样系统 ( inlet system) : 这一特殊装置需要在几秒钟内迅速、连续地分析两个气体 ( 样品和标准气) ,所以安装较为特殊,包括一个转换阀( changeover valve) 。这两种气体由直径约 0. 1mm、长约 1m 的毛细管从储样室( reservoir) 中引入,其中一种气体流向离子源 ( ion source) ,另一种气体流向废气泵 ( waste pump) ,从而保持毛细管中的气流连续不断。为避免质量损失( mass discrimination) ,气体物质的同位素丰度测量利用黏性的气体流。在黏性气流状态下,分子的自由路径长度非常小,因此分子经常发生碰撞,气体混合均匀,从而不会发生质量分离 ( mass separation) 。在黏性流进样系统的末端,有一个泄漏口 ( leak) ,使得流线收缩。应用双路进样系统 ( dual inlet system)可以对非常少量的样品进行高精度分析,同时,样品分析受黏性气流保持状态的限制。这一过程一般在 15 ~ 20mbar ( 100Pa) 的压力下进行 ( Brand,2002) 。如要减小样品量,则必须在毛细管之前将气体浓缩为很小的体积。

( 2) 离子源 ( ion source) : 是质谱仪中离子形成、加速、聚焦成为狭窄的离子束的部位。在离子源中,气体流总是呈分子状态。气体样品的离子多由电子轰击 ( electron bombardment) 产生。电子束,一般由加热的钨丝或铼丝发出,在静电场中进行加速,在进入电离室 ( ionization chamber) 之前的能量达到 50 ~150eV 之间,以便使一次电离效率最大化。电离之后,根据离子获得的能量,带电分子被进一步分成若干分子碎片,从而产生特定化合物的质谱。

为了增加电离的几率,采用同性质的弱磁场使电子保持螺旋轨道 ( spiral path) 。电子在电离室的末端由带正电的捕集器收集,对电子流进行测量,并由电子发射调节器电路 ( emission regulator circuitry) 将其保持在恒定状态。

电离的分子在电场的作用下脱离电子束,随后由高达数千伏的电压进行加速,其路径形成离子束,该离子束通过出口狭缝进入分析器。因此,进入磁场的正离子在本质上都是单能的,即它们拥有相同的动能,其表达式如下:

稳定同位素地球化学( 第六版)

电离效率决定了质谱仪的灵敏度,其值约为 1000 ~2000 个分子产生一个离子( Brand,2002) 。

( 3) 质量分析器 ( mass analyzer) : 可根据其 m/e ( 质量/电荷) 比,将离子源发出的离子束分离开来。当离子束通过磁场时,离子发生偏转,形成圆周轨迹,其圆周半径与 m/e 的平方根成比例。通过这一过程,离子被分离并形成离子束,每个离子束都具有特定的 m/e 值。

1940 年,Nier 提出了扇形磁分析器 ( sector magnetic analyzer) 。在这种分析器中,离子束发生偏转的磁场呈楔形。离子束以与磁场边界呈直角的角度进入和离开磁场,因此其偏转角度等于楔形角 ( 如可以是 60°) 。扇形磁分析器的优势在于其离子源和检测器相对来说,不受分析器磁场质量损失的影响。

( 4) 离子检测器 ( ion detector) : 离子通过磁场后,被离子检测器所收集。离子检测器将输入的离子转换为电脉冲 ( electrical impulse) ,电脉冲随后被输入放大器。Nier et al. ( 1947) 提出,利用多个检测器同时聚集离子流。这种同时利用两个单独放大器的优势在于,对于所有 m/e 离子束,作为时间函数的离子流波动都是相同的。每一个检测器通道都安装有一个适合于所测离子流天然丰度的高电阻的电阻器。

现代同位素比质谱仪具有至少装有三个法拉第杯 ( Faraday collector,Faraday cup) ,它们位于质谱仪的焦平面 ( focal plane) 上。这是由于相邻峰值的间距随质量变化,并且范围是非线性的,因此,每组同位素往往都需要有一套单独的法拉第杯。

连续流: 同位素比值监测质谱仪

20 世纪 50 年代早期,Nier 提出了双黏性流质谱仪 ( dual viscous-flow mass spectrometer) ,20 世纪 80 年代中期对商业质谱仪的硬件做了极小的修改。在过去的几年里,人们为减小用于同位素测量的样品大小而进行了艰苦的尝试。将传统的双路进样技术改为连续流同位素比值监测质谱仪 ( continuous-flowisotope ratio monitoring mass spectrometer) 。使用这种质谱仪时,被分析的气体混合于载气流中的微量的气体中,从而达到黏性流状态。现今,市场在售的大多数气体质谱仪都带有连续流系统,而非双路进样系统。

传统的离线样品制备程序非常耗时,并且分析精度也取决于研究者的技能。而利用在线样品制备技术,可将元素分析器和质谱仪直接结合,从而解决和最大程度地减少很多离线样品制备导致的问题。这两种技术的区别参看表 1. 5。

表 1. 5 离线和在线测量技术之间的对比

这种新型的质谱仪往往结合有色谱技术 ( chromatographic technique) 。同位素测量所需的样品量大小已经急剧减小到十亿分之一摩尔甚至万亿分之一摩尔范围 ( Merritt & Hayes,1994) 。气相色谱-同位素比质谱仪技术 ( GC -IRMS) 的重要特性如下 ( Brand,2002) :

( 1) 按照分子在气相色谱柱 ( GS column) 上流出的顺序对离子流进行测量,但其相对于参比气体的强度将不会发生明显改变。色谱不但能够分离不同的化学物质种类,还可分离不同的同位素种类。也就是说,从色谱柱流出后,随色谱峰上位置的不同,该化合物的同位素组成发生变化。因此,必须对每个色谱峰的整体宽度进行积分,才能获得该化合物真实的同位素比值。

(2)同位素信号的测量时间受色谱峰宽度的限制。对于陡峭的尖峰来说,这一时间可能不超过5s。

(3)在线分析仪器的绝对灵敏度与双路进样系统的仪器相比更为重要。由于色谱法所需的样品量非常小,因此采用大量的样品组以获得有效的统计数据库往往非常重要。

通过采用加入内标样方法,可以实现样品分析标准化。内标样的同位素组成利用传统技术确定。

质谱分析技术有几个独立的发展途径,这些途径均具有两个发展方向:元素分析仪→同位素比质谱仪,毛细管气相色谱→同位素比质谱仪。在元素分析仪中,样品燃烧生成CO2、N2、SO2和H2O,这些气体以化学法捕集,或者在气相色谱柱上被分离。这些技术的优势有:①自动化制备样品;②每个样品的成本较低;③能够进行大量的样品分析。




质谱是什么
2、质谱主要类型:质谱技术主要分为质谱仪(mass spectrometer)和质谱法(mass spectrometry)两种类型。质谱仪是通过质谱分析得出化学组分或结构的一种仪器。质谱法是利用质谱仪技术进行科学研究和分析的方法,可以应用于材料分析、生命科学研究、工艺控制等领域。3、质谱的应用领域:由于质谱技术的应用广泛、...

质谱分析是什么?
色谱、电泳等分离方法与质谱分析相结合为复杂混合物的在线分离分析提供了有力的手段,GC—MS联用技术的应用已得到充分的证明。近年来把液相色谱、毛细管电泳等高效分离手段与质谱连接已在分析强极性、低挥发性样品的混合物方面也取得了进步。主要的接口技术有:①粒子束(particle beam),它能把液相色谱与质谱连接起来,其...

质谱分析和串联质谱的区别是什么
1、串联质谱是质谱中的一种。较多的是单极质谱,可能大数情况下质谱分析就理解成是单极质谱吧,就是只带有一个质量分析器;2、串联质谱有两个质量分析器,也叫二级质谱,比如四极杆和飞行时间质谱串联,离子阱和飞行时间质谱串联。

什么是质谱分析???
解析未知样的质谱图 解析分子离子区 (1)标出各峰的质荷比数,尤其注意高质荷比区的峰。(2)识别分子离子峰。首先在高质荷比区假定分子离子峰,判断该假定分子离子峰与相邻碎片离子峰关系是否合理,然后判断其是否符合氮律。若二者均相符,可认为是分子离子峰。(3)分析同位素峰簇的相对强度比及峰与峰...

质谱分析是什么?
质谱分析是一种强大的物理分析工具,其核心原理是利用离子源将试样电离产生不同荷质比的离子,通过质量分析器分离并记录,从而确定各组分的质量。1919年,阿斯顿发明的第一台质谱仪开启了这一领域的先河,他的贡献包括发现多种元素同位素并验证原子质量亏损,为此赢得了诺贝尔化学奖。起初,质谱仪主要用于科研...

质谱法的原理&如何看质谱图
2、看质谱图,只要看特征峰就好了,不要每个峰都知道是什么,只有自己想要的峰。化学物质的分子中,单纯依靠质谱来判断是否有某种化学分子存在的情况几乎不存在,更重要的是做为一种辅助监测手段。不过懂得看质谱图,利用质谱分析,还是有必要。3、最右面的峰是全分子的离子峰,是化学物质的分子失去1个质子...

什么是质子能谱
质谱,质谱分析本是一种物理方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量,分子量,化学结构。详见: http:...

质谱检测是什么?
质谱检测是一种与光谱并列的谱学方法。质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理Joseph John Thomson是使试样中各组分在离子...

质谱检测是什么?
质谱仪器一般由样品导入系统、离子源、质量分析器、检测器、数据处理系统等部分组成。质谱分析 是一种测量离子质荷比(质量-电荷比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用...

请教mass spectrometric 是什么?工作原理是什么?
mass spectrometric是形容词质谱的 质谱为 mass spectrometry,简称MS 质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m\/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品...

南沙群岛19666814139: 质谱的工作原理是什么?希望有关专家能告诉我质谱的原理是怎样,再有
宓从全威: 质谱分析法主要是通过对样品的离子的质荷比的分析而实现对样品进行定性和定量的一种方法.因此,质谱仪都必须有电离装置把样品电离为离子,有质量分析装置把不同...

南沙群岛19666814139: 气相色谱 - 质谱联用仪的质谱原理 -
宓从全威: 质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理 是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器.在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量.

南沙群岛19666814139: 高中化学.什么是质谱仪,原理是什么,在化学中有什么应用 -
宓从全威: 质谱分析就是用强电流电子束轰击目标物,电离、解离目标物,得到带电的粒子、分子片段,在磁场中检测其器特定运动偏移量来区分该粒子或者该片段的质量的手段.实际上可能比我说的要复杂很多,也能表征更多的物质结构信息.

南沙群岛19666814139: 质谱仪的作用和原理?(我是高中生) -
宓从全威: 地球上的元素,比方说氦元素,是有同位素的,分别是氦2和氦3.所谓同位素,就是同一种元素(质子相同),但具有不同的质量(由于中子数不同导致).质谱仪的作用,就是把同一种元素的各种同位素都区分开来(各同位素按质量大小排列,形成一个"谱").其原理就是带电粒子垂直入射到磁场中,做圆周运动的圆周半径与质量有关(公式复杂就不写了),根据半径与质量的关系就可以区别各个同位素了.

南沙群岛19666814139: 质谱的作用是什么 有什么用途呢?可以用自己的话来说明么? -
宓从全威:[答案] 质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器.在质量分析器中,再利用电场和...

南沙群岛19666814139: 请问质谱仪的基本工作原理是什么?
宓从全威: 它的基本工作原理是:利用一种具有分离技术的仪器,作为质谱仪的进样器,将有机混合物分离成纯组分进入质谱仪,充分发挥质谱仪的分析特长,为每个组分提供分子量和分子结构信息

南沙群岛19666814139: 什么是质子能谱 -
宓从全威: 质谱,质谱分析本是一种物理方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器.在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量,分子量,化学结构. 详见: http://www.bwaic.com/service/hplcdoc0010.htm

南沙群岛19666814139: 气象质谱法的原理是什么啊! -
宓从全威:[答案] 是说气相质谱吧?是气相色谱与质谱的联用.气相色谱分离混合物,每个峰用质谱检测分子量,以确定其结构.

南沙群岛19666814139: 质谱法的原理&如何看质谱图? -
宓从全威: 1.质谱就是真空中,利用电子束轰击待测化学物质的分子,将该分子打散,打成一个一个的带电荷的分子离子片段,再根据质谱仪上各个分子离子片段的出峰位置和强度,最终显示出各个离子的分子量以及相应浓度. 2.最右面的峰是全分子的离...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网