数控编程技术:NC程序仿真与校验

作者&投稿:逯采 (若有异议请与网页底部的电邮联系)
现在国外数控编程主要是哪种?~

1数控编程及其发展

数控编程是目前CAD/CAPP/CAM系统中最能明显发挥效益的环节之一,其在实现设计加工自动化、提高加工精度和加工质量、缩短产品研制周期等方面发挥着重要作用。在诸如航空工业、汽车工业等领域有着大量的应用。由于生产实际的强烈需求,国内外都对数控编程技术进行了广泛的研究,并取得了丰硕成果。下面就对数控编程及其发展作一些介绍。

1.1数控编程的基本概念

数控编程是从零件图纸到获得数控加工程序的全过程。它的主要任务是计算加工走刀中的刀位点(cutterlocationpoint简称CL点)。刀位点一般取为刀具轴线与刀具表面的交点,多轴加工中还要给出刀轴矢量。

1.2数控编程技术的发展概况

为了解决数控加工中的程序编制问题,50年代,MIT设计了一种专门用于机械零件数控加工程序编制的语言,称为APT(AutomaticallyProgrammedTool)。其后,APT几经发展,形成了诸如APTII、APTIII(立体切削用)、APT(算法改进,增加多坐标曲面加工编程功能)、APTAC(Advancedcontouring)(增加切削数据库管理系统)和APT/SS(SculpturedSurface)(增加雕塑曲面加工编程功能)等先进版。
采用APT语言编制数控程序具有程序简炼,走刀控制灵活等优点,使数控加工编程从面向机床指令的“汇编语言”级,上升到面向几何元素.APT仍有许多不便之处:采用语言定义零件几何形状,难以描述复杂的几何形状,缺乏几何直观性;缺少对零件形状、刀具运动轨迹的直观图形显示和刀具轨迹的验证手段;难以和CAD数据库和CAPP系统有效连接;不容易作到高度的自动化,集成化。
针对APT语言的缺点,1978年,法国达索飞机公司开始开发集三维设计、分析、NC加工一体化的系统,称为为CATIA。随后很快出现了象EUCLID,UGII,INTERGRAPH,Pro/Engineering,MasterCAM及NPU/GNCP等系统,这些系统都有效的解决了几何造型、零件几何形状的显示,交互设计、修改及刀具轨迹生成,走刀过程的仿真显示、验证等问题,推动了CAD和CAM向一体化方向发展。到了80年代,在CAD/CAM一体化概念的基础上,逐步形成了计算机集成制造系统(CIMS)及并行工程(CE)的概念。目前,为了适应CIMS及CE发展的需要,数控编程系统正向集成化和智能化夫发展。
在集成化方面,以开发符合STEP(StandardfortheExchangeofProductModelData)标准的参数化特征造型系统为主,目前已进行了大量卓有成效的工作,是国内外开发的热点;在智能化方面,工作刚刚开始,还有待我们去努力。

2 NC刀具轨迹生成方法研究发展现状

数控编程的核心工作是生成刀具轨迹,然后将其离散成刀位点,经后置处理产生数控加工程序。下面就刀具轨迹产生方法作一些介绍。

2.1基于点、线、面和体的NC刀轨生成方法

CAD技术从二维绘图起步,经历了三维线框、曲面和实体造型发展阶段,一直到现在的参数化特征造型。在二维绘图与三维线框阶段,数控加工主要以点、线为驱动对象,如孔加工,轮廓加工,平面区域加工等。这种加工要求操作人员的水平较高,交互复杂。在曲面和实体造型发展阶段,出现了基于实体的加工。实体加工的加工对象是一个实体(一般为CSG和BREP混合表示的),它由一些基本体素经集合运算(并、交、差运算)而得。实体加工不仅可用于零件的粗加工和半精加工,大面积切削掉余量,提高加工效率,而且可用于基于特征的数控编程系统的研究与开发,是特征加工的基础。
实体加工一般有实体轮廓加工和实体区域加工两种。实体加工的实现方法为层切法(SLICE),即用一组水平面去切被加工实体,然后对得到的交线产生等距线作为走刀轨迹。本文从系统需要角度出发,在ACIS几何造型平台上实现了这种基于点、线、面和实体的数控加工。

2.2基于特征的NC刀轨生成方法

参数化特征造型已有了一定的发展时期,但基于特征的刀具轨迹生成方法的研究才刚刚开始。特征加工使数控编程人员不在对那些低层次的几何信息(如:点、线、面、实体)进行操作,而转变为直接对符合工程技术人员习惯的特征进行数控编程,大大提高了编程效率。
W.R.Mail和A.J.Mcleod在他们的研究中给出了一个基于特征的NC代码生成子系统,这个系统的工作原理是:零件的每个加工过程都可以看成对组成该零件的形状特征组进行加工的总和。那么对整个形状特征或形状特征组分别加工后即完成了零件的加工。而每一形状特征或形状特征组的NC代码可自动生成。目前开发的系统只适用于2.5D零件的加工。
LeeandChang开发了一种用虚拟边界的方法自动产生凸自由曲面特征刀具轨迹的系统。这个系统的工作原理是:在凸自由曲面内嵌入一个最小的长方块,这样凸自由曲面特征就被转换成一个凹特征。最小的长方块与最终产品模型的合并就构成了被称为虚拟模型的一种间接产品模型。刀具轨迹的生成方法分成三步完成:(1)、切削多面体特征;(2)、切削自由曲面特征;(3)、切削相交特征。
JongYunJung研究了基于特征的非切削刀具轨迹生成问题。文章把基于特征的加工轨迹分成轮廓加工和内区域加工两类,并定义了这两类加工的切削方向,通过减少切削刀具轨迹达到整体优化刀具轨迹的目的。文章主要针对几种基本特征(孔、内凹、台阶、槽),讨论了这些基本特征的典型走刀路径、刀具选择和加工顺序等,并通过IP(InterProgramming)技术避免重复走刀,以优化非切削刀具轨迹。另外,JongYunJong还在他1991年的博士论文中研究了制造特征提取和基于特征的刀具及刀具路径。
特征加工的基础是实体加工,当然也可认为是更高级的实体加工。但特征加工不同于实体加工,实体加工有它自身的局限性。特征加工与实体加工主要有以下几点不同:
从概念上讲,特征是组成零件的功能要素,符合工程技术人员的操作习惯,为工程技术人员所熟知;实体是低层的几何对象,是经过一系列布尔运算而得到的一个几何体,不带有任何功能语义信息;实体加工往往是对整个零件(实体)的一次性加工。但实际上一个零件不太可能仅用一把刀一次加工完,往往要经过粗加工、半精加工、精加工等一系列工步,零件不同的部位一般要用不同的刀具进行加工;有时一个零件既要用到车削,也要用到铣削。因此实体加工主要用于零件的粗加工及半精加工。而特征加工则从本质上解决了上述问题;特征加工具有更多的智能。对于特定的特征可规定某几种固定的加工方法,特别是那些已在STEP标准规定的特征更是如此。如果我们对所有的标准特征都制定了特定的加工方法,那么对那些由标准特征够成的零件的加工其方便性就可想而知了。倘若CAPP系统能提供相应的工艺特征,那么NCP系统就可以大大减少交互输入,具有更多的智能。而这些实体加工是无法实现的;
特征加工有利于实现从CAD、CAPP、NCP及CNC系统的全面集成,实现信息的双向流动,为CIMS乃至并行工程(CE)奠定良好的基础;而实体加工对这些是无能为力的。

2.3现役几个主要CAD/CAM系统中的NC刀轨生成方法分析

现役CAM的构成及主要功能

目前比较成熟的CAM系统主要以两种形式实现CAD/CAM系统集成:一体化的CAD/CAM系统(如:UGII、Euclid、Pro/ENGINEER等)和相对独立的CAM系统(如:Mastercam、Surfcam等)。前者以内部统一的数据格式直接从CAD系统获取产品几何模型,而后者主要通过中性文件从其它CAD系统获取产品几何模型。然而,无论是哪种形式的CAM系统,都由五个模块组成,即交互工艺参数输入模块、刀具轨迹生成模块、刀具轨迹编辑模块、三维加工动态仿真模块和后置处理模块。下面仅就一些著名的CAD/CAM系统的NC加工方法进行讨论。

UGII加工方法分析
一般认为UGII是业界中最好,最具代表性的数控软件。其最具特点的是其功能强大的刀具轨迹生成方法。包括车削、铣削、线切割等完善的加工方法。其中铣削主要有以下功能:
、PointtoPoint:完成各种孔加工;
、PanarMill:平面铣削。包括单向行切,双向行切,环切以及轮廓加工等;
、FixedContour:固定多轴投影加工。用投影方法控制刀具在单张曲面上或多张曲面上的移动,控制刀具移动的可以是已生成的刀具轨迹,一系列点或一组曲线;
、VariableContour:可变轴投影加工;
、Parameterline:等参数线加工。可对单张曲面或多张曲面连续加工;
、ZigZagSurface:裁剪面加工;
、RoughtoDepth:粗加工。将毛坯粗加工到指定深度;
、CavityMill:多级深度型腔加工。特别适用于凸模和凹模的粗加工;
、SequentialSurface:曲面交加工。按照零件面、导动面和检查面的思路对刀具的移动提供最大程度的控制。
EDSUnigraphics还包括大量的其它方面的功能,这里就不一一列举了。

STRATA加工方法分析
STRATA是一个数控编程系统开发环境,它是建立在ACIS几何建模平台上的。
它为用户提供两种编程开发环境,即NC命令语言接口和NC操作C++类库。它可支持三轴铣削,车削和线切割NC加工,并可支持线框、曲面和实体几何建模。其NC刀具轨迹生成方法是基于实体模型。STRATA基于实体的NC刀具轨迹生成类库提供的加工方法包括:
ProfileToolpath:轮廓加工;
AreaClearToolpath:平面区域加工;
SolidProfileToolpath:实体轮廓加工;
SolidAreaClearToolpath:实体平面区域加工;
SolidFaceToolPath:实体表面加工;
SolidSliceToolPath:实体截平面加工;
LanguagebasedToolpath:基于语言的刀具轨迹生成。
其它的CAD/CAM软件,如Euclid,Cimitron,CV,CATIA等的NC功能各有千秋,但其基本内容大同小异,没有本质区别。

2.4现役CAM系统刀轨生成方法的主要问题

按照传统的CAD/CAM系统和CNC系统的工作方式,CAM系统以直接或间接(通过中性文件)的方式从CAD系统获取产品的几何数据模型。CAM系统以三维几何模型中的点、线、面、或实体为驱动对象,生成加工刀具轨迹,并以刀具定位文件的形式经后置处理,以NC代码的形式提供给CNC机床,在整个CAD/CAM及CNC系统的运行过程中存在以下几方面的问题:
CAM系统只能从CAD系统获取产品的低层几何信息,无法自动捕捉产品的几何形状信息和产品高层的功能和语义信息。因此,整个CAM过程必须在经验丰富的制造工程师的参与下,通过图形交互来完成。如:制造工程师必须选择加工对象(点、线、面或实体)、约束条件(装夹、干涉和碰撞等)、刀具、加工参数(切削方向、切深、进给量、进给速度等)。整个系统的自动化程度较低。
在CAM系统生成的刀具轨迹中,同样也只包含低层的几何信息(直线和圆弧的几何定位信息),以及少量的过程控制信息(如进给率、主轴转速、换刀等)。因此,下游的CNC系统既无法获取更高层的设计要求(如公差、表面光洁度等),也无法得到与生成刀具轨迹有关的加工工艺参数。
CAM系统各个模块之间的产品数据不统一,各模块相对独立。例如刀具定位文件只记录刀具轨迹而不记录相应的加工工艺参数,三维动态仿真只记录刀具轨迹的干涉与碰撞,而不记录与其发生干涉和碰撞的加工对象及相关的加工工艺参数。
CAM系统是一个独立的系统。CAD系统与CAM系统之间没有统一的产品数据模型,即使是在一体化的集成CAD/CAM系统中,信息的共享也只是单向的和单一的。CAM系统不能充分理解和利用CAD系统有关产品的全部信息,尤其是与加工有关的特征信息,同样CAD系统也无法获取CAM系统产生的加工数据信息。这就给并行工程的实施带来了困难 。

3数控仿真技术

3.1计算机仿真的概念及应用

从工程的角度来看,仿真就是通过对系统模型的实验去研究一个已有的或设计中的系统。分析复杂的动态对象,仿真是一种有效的方法,可以减少风险,缩短设计和制造的周期,并节约投资。计算机仿真就是借助计算机,利用系统模型对实际系统进行实验研究的过程。它随着计算机技术的发展而迅速地发展,在仿真中占有越来越重要的地位。计算机仿真的过程可通过图1所示的要素间的三个基本活动来描述:
建模活动是通过对实际系统的观测或检测,在忽略次要因素及不可检测变量的基础上,用物理或数学的方法进行描述,从而获得实际系统的简化近似模型。这里的模型同实际系统的功能与参数之间应具有相似性和对应性。
仿真模型是对系统的数学模型(简化模型)进行一定的算法处理,使其成为合适的形式(如将数值积分变为迭代运算模型)之后,成为能被计算机接受的“可计算模型”。仿真模型对实际系统来讲是一个二次简化的模型。
仿真实验是指将系统的仿真模型在计算机上运行的过程。仿真是通过实验来研究实际系统的一种技术,通过仿真技术可以弄清系统内在结构变量和环境条件的影响。
计算机仿真技术的发展趋势主要表现在两个方面:应用领域的扩大和仿真计算机的智能化。计算机仿真技术不仅在传统的工程技术领域(航空、航天、化工等方面)继续发展,而且扩大到社会经济、生物等许多非工程领域,此外,并行处理、人工智能、知识库和专家系统等技术的发展正影响着仿真计算机的发展。
数控加工仿真利用计算机来模拟实际的加工过程,是验证数控加工程序的可靠性和预测切削过程的有力工具,以减少工件的试切,提高生产效率。

3.2数控仿真技术的研究现状

数控机床加工零件是靠数控指令程序控制完成的。为确保数控程序的正确性,防止加工过程中干涉和碰撞的发生,在实际生产中,常采用试切的方法进行检验。但这种方法费工费料,代价昂贵,使生产成本上升,增加了产品加工时间和生产周期。后来又采用轨迹显示法,即以划针或笔代替刀具,以着色板或纸代替工件来仿真刀具运动轨迹的二维图形(也可以显示二维半的加工轨迹),有相当大的局限性。对于工件的三维和多维加工,也有用易切削的材料代替工件(如,石蜡、木料、改性树脂和塑料等)来检验加工的切削轨迹。但是,试切要占用数控机床和加工现场。为此,人们一直在研究能逐步代替试切的计算机仿真方法,并在试切环境的模型化、仿真计算和图形显示等方面取得了重要的进展,目前正向提高模型的精确度、仿真计算实时化和改善图形显示的真实感等方向发展。
从试切环境的模型特点来看,目前NC切削过程仿真分几何仿真和力学仿真两个方面。几何仿真不考虑切削参数、切削力及其它物理因素的影响,只仿真刀具工件几何体的运动,以验证NC程序的正确性。它可以减少或消除因程序错误而导致的机床损伤、夹具破坏或刀具折断、零件报废等问题;同时可以减少从产品设计到制造的时间,降低生产成本。切削过程的力学仿真属于物理仿真范畴,它通过仿真切削过程的动态力学特性来预测刀具破损、刀具振动、控制切削参数,从而达到优化切削过程的目的。
几何仿真技术的发展是随着几何建模技术的发展而发展的,包括定性图形显示和定量干涉验证两方面。目前常用的方法有直接实体造型法,基于图像空间的方法和离散矢量求交法。

3.3直接实体造型法

这种方法是指工件体与刀具运动所形成的包络体进行实体布尔差运算,工件体的三维模型随着切削过程被不断更新。
Sungurtekin和Velcker开发了一个铣床的模拟系统。该系统采用CSG法来记录毛坯的三维模型,利用一些基本图元如长方体、圆柱体、圆锥体等,和集合运算,特别是并运算,将毛坯和一系列刀具扫描过的区域记录下来,然后应用集合差运算从毛坯中顺序除去扫描过的区域。所谓被扫过的区域是指切削刀具沿某一轨迹运动时所走过的区域。在扫描了每段NC代码后显示变化了的毛坯形状。
Kawashima等的接合树法将毛坯和切削区域用接合树(graftree)表示,即除了空和满两种结点,边界结点也作为八叉树(octtree)的叶结点。边界结点包含半空间,结点物体利用在这些半空间上的CSG操作来表示。接合树细分的层次由边界结点允许的半空间个数决定。逐步的切削仿真利用毛坯和切削区域的差运算来实现。毛坯的显示采用了深度缓冲区算法,将毛坯划分为多边形实现毛坯的可视化。


用基于实体造型的方法实现连续更新的毛坯的实时可视化,耗时太长,于是一些基于观察的方法被提出来。

3.4基于图像空间的方法

这种方法用图像空间的消隐算法来实现实体布尔运算。VanHook采用图象空间离散法实现了加工过程的动态图形仿真。他使用类似图形消隐的zbuffer思想,沿视线方向将毛坯和刀具离散,在每个屏幕象素上毛坯和刀具表示为沿z轴的一个长方体,称为Dexel结构。刀具切削毛坯的过程简化为沿视线方向上的一维布尔运算,见图3,切削过程就变成两者Dexel结构的比较:
CASE1:只有毛坯,显示毛坯,break;
CASE2:毛坯完全在刀具之后,显示刀具,break;
CASE3:刀具切削毛坯前部,更新毛坯的dexel结构,显示刀具,break;
CASE4:刀具切削毛坯内部,删除毛坯的dexel结构,显示刀具,break;
CASE5:刀具切削毛坯内部,创建新的毛坯dexel结构,显示毛坯,break;
CASE6:刀具切削毛坯后部,更新毛坯的dexel结构,显示毛坯,break;
CASE7:刀具完全在毛坯之后,显示毛坯,break;
CASE8:只有刀具,显示刀具,break。
这种方法将实体布尔运算和图形显示过程合为一体,使仿真图形显示有很好的实时性。
Hsu和Yang提出了一种有效的三轴铣削的实时仿真方法。他们使用zmap作为基本数据结构,记录一个二维网格的每个方块处的毛坯高度,即z向值。这种数据结构只适用于刀轴z向的三轴铣削仿真。对每个铣削操作通过改变刀具运动每一点的深度值,很容易更新zmap值,并更新工件的图形显示。

3.5离散矢量求交法

由于现有的实体造型技术未涉及公差和曲面的偏置表示,而像素空间布尔运算并不精确,使仿真验证有很大的局限性。为此Chappel提出了一种基于曲面技术的“点矢量”(pointvector)法。这种方法将曲面按一定精度离散,用这些离散点来表示该曲面。以每个离散点的法矢为该点的矢量方向,延长与工件的外表面相交。通过仿真刀具的切削过程,计算各个离散点沿法矢到刀具的距离s。
设sg和sm分别为曲面加工的内、外偏差,如果sg< S < SM说明加工处在误差范围内,S < SG则过切,S>sm则漏切。该方法分为被切削曲面的离散(discretization)、检测点的定位(location)和离散点矢量与工件实体的求交(intersection)三个过程。采用图像映射的方法显示加工误差图形;零件表面的加工误差可以精确地描写出来。
总体来说,基于实体造型的方法中几何模型的表达与实际加工过程相一致,使得仿真的最终结果与设计产品间的精确比较成为可能;但实体造型的技术要求高,计算量大,在目前的计算机实用环境下较难应用于实时检测和动态模拟。基于图像空间的方法速度快得多,能够实现实时仿真,但由于原始数据都已转化为像素值,不易进行精确的检测。离散矢量求交法基于零件的表面处理,能精确描述零件面的加工误差,主要用于曲面加工的误差检测。

MASTERCAM第一
UG第二

数控编程技术:NC程序仿真与校验2008年02月20日 星期三 12:26本文应用NC程序仿真校验软件VERICUT,研究了NC程序的仿真技术,分别探讨了手工编写的和由CAD/CAM软件生成的NC程序的校验方法,完成了典型零件手工编写的和由CAD/CAM软件生成的NC程序的切削加工仿真和程序校验。

一、引言

NC程序作为数控加工的信息载体,其正确与否直接影响零件的加工质量。目前实际生产使用的NC程序,在投入加工之前通常采用机床空运行和样件试切,完成NC程序的校验。该方法加工准备周期长,生产成本高,难以实现数控机床的高效率。图形仿真是目前通用的NC校验方法,一般采用离线工作方式,用三维图形直观显示机床、刀具、工件以及辅助设备(机械手等),在计算机上对检验程序进行编译,并驱动图形加工系统进行准实时加工,检查NC代码中的语法和语意错误,实现干涉校验。NC程序仿真能直观安全地模拟、验证、分析切削过程,免去了以往样件生产的样件材料损耗、刀具磨损、机床清理等,从而缩短生产准备周期,降低成本。本文选择了两个典型零件作为研究对象,探讨利用计算机辅助技术生成NC程序,然后进行仿真校验的技术问题。

以Unigraphics NX和VERICUT 5.3为工具。在Unigraphics NX/Modeling模块中做零件和模型造型,用VB和Unigraphics NX/Manufacturing等软件生成NC程序,再用VERICUT 5.3仿真软件实现NC程序仿真校验。

二、NC程序仿真与校验工作流程

VERICUT仿真校验NC程序的工作流程如图1所示。

图1 VERICUT仿真校验NC程序的工作流程

几乎所有形式的NC程序代码都可以作为VERICUT的输入程序,包括手工编写的纯文本格式的数控加工程序。M&G代码与APT形式的CL文件一样,都可以被VERICUT直接执行。类似真实加工的是,VERICUT需要刀具轨迹代码,需要对于被加工的原材料的描述,也需要对于切削刀具的描述。验证过程的结果之一是一个加工过的三维实体模型——产品。结果之二是一个报告——包含模拟加工过程所监测到的所有错误信息的日志报告。

三、VERICUT实现NC程序仿真校验的方法和步骤

1. 手工编写的NC程序仿真校验

对于这种情况,这里以一个用VB编写的纯文本数控加工程序为例加以说明。如图2所示的是一个已经粗加工的零件,要对其顶面进行精加工。顶面为一不能用CAD软件完成造型的三维空间曲面,原曲面上相应点的坐标是在三坐标测量机上测量得到的,只能根据这些坐标值进行编程,然后加工出曲面。用VB编写的数控程序有5万多行,程序的校验原先是在数控机床上对样件进行试切完成的,要经历试切→测量→修改程序→再试切的程序校验过程,整个过程既费工又费时,而且效果也不理想。改用VERICUT对NC程序进行仿真和校验,不仅节省时间和降低成本,而且效果很好。

图2 毛坯模型

本例为了获得好的仿真效果,利用Unigraphics NX制作了一个近似的实体模型。模型制作好后,输出为*.IGS文件并保存。仿真需要完成三个操作步骤:准备NC程序;准备被加工零件的原材料模型;完成仿真。

进入VERICUT主界面,首先定义工作环境,单击File→Properties,Default Units=Millimeter设置为公制毫米单位,然后单击File→New Session新建一个*.USR文件。在其中定义刀具路径、毛坯和刀具,并完成仿真。

(1)毛坯

单击VERICUT主菜单的Model→Model Definition:Import标签,单击Browse,点选保存*.IGS原材料模型文件的目录,选择预先制作好的原材料模型文件。取Tolerance=0.005,单击Apply,被加工零件的原材料模型即被输入VERICUT主界面,如图1所示。

(2)NC程序

手工编写的NC程序如图2所示。共5万多行,预先编好的NC程序保存为纯文本格式。NC程序以顶面中心为编程原点,精加工工序使用的刀具为φ20球头铣刀。NC程序调用步骤:单击Setup menu→Toolpath:Toolpath Type=G-Code Data,单击Add,选择预先编好的程序文件,单击Ok,刀具路径文件被调入VERICUT。

图3 NC程序

(3)刀具

根据程序的要求,在VERICUT中定义刀具,可以从VERICUT附带的刀具库中选择。步骤是:单击Setup→Tool Manager→File→Open,在VERICUT的安装目录下,找到刀具库文件fanuc3xm.tls,并打开。对ID号为1的刀具进行编辑,改为φ20的球头铣刀,并将其Gage Offest设为零。删除其余刀具,将修改的结果另存至相应的目录。

(4)数控系统

这里要为VERICUT仿真环境指定一个数控系统控制文件。可直接从VERICUT的库文件中选择相应的数控系统控制文件,本例选用的控制文件是fan0m·ctl (mill)。调用步骤:单击Setup→Control→Open,在VERICUT安装目录下找到库文件fan0m·ctl,并打开。该文件是一个文本文件,包含数控系统如何处理G代码的指令、程序的格式、机器码编写规则和程序调用的规则等,用于将刀具路径编译为机床能识别的机器码。

(5)机床

要根据实际机床定义仿真的机床组件。下面以Funac-3Axis立式加工中心为例,说明如何添加机床各轴组件到组件树形关系中。

☆在Base下建立Z轴,并定义Z轴零点相对于机床零点的位置;
☆在Z轴上建立刀具Tool,并定义其相对于机床零点的位置;
☆再在Base下建立Y轴,在Y轴上建立X轴;
☆然后利用剪切、粘贴功能,将组件树形关系调整为如图(4)所示结构。

图4 组件树形关系

说明:机床组件中各轴零点均设在毛坯底面中心,刀具Tool的Z坐标根据程序中的G92指令和毛坯顶面中心至底面中心的高度设置,类似于在数控机床上将工件坐标零点设置在毛坯顶面的中心。

(6)仿真

这里要确保刀具路径的原点与机床各组件的零点相符。本例根据以上的设置将刀具路径原点设在Stock_Origin。设置步骤:单击Setup menu→Toolpath:在刀具原点列表下拉菜单中,点选Stock_Origin,然后单击Ok。

单击Play to End图标即可仿真刀具切削过程。仿真过程中,打开Info/Status窗口,则在动态切削过程的同时,还能实时得到其相应的刀具位置、错误信息、警告信息、刀具信息等,如图5所示。

a)仿真切削过程 b)有误切程序的仿真结果 c)调整后的程序仿真结果

图5 仿真结果

查看日志文件,可得到VERICUT记录的错误信息和警告信息。如有错误,则会显示发生错误的程序段。如记录数均为零,则说明NC程序通过了VERICUT的验证。

2. Unigraphics NX/Manufacturing中生成的NC程序仿真校验

对于这种情况,本文着重探讨NC程序的仿真校验。尽管在Unigraphics NX/Manufacturing中,生成刀具路径时,Unigraphics NX/Manufacturing提供了加工仿真功能,但是对一些复杂零件的刀具路径在实际加工前还应对NC程序进行进一步的验证。如图6所示的零件,在Unigraphics NX/Manufacturing中编制刀具路径时,经加工仿真未发现问题,用默认的三轴铣后处理器将刀具路径后处理生成NC程序,再用VERICUT进行验证,却出现了错误报告,错误程序段为N3340 G2 X59.026 Y33.681 I-33.91 F250,圆弧插补缺少J地址字,对应的刀具路径如图6a所示。类似的错误有好几处,这样的错误一般难以检查发现。但用VERICUT软件很容易就能发现问题。经VERICUT仿真的NC程序,除了能在动态切削过程的同时,实时得到其相应的刀具位置、错误信息、警告信息、刀具信息外,还生成相应的日志报告。报告中详细记载了错误的性质和相应的程序段,通过路径重放还能再现错误发生的过程,而且能立即在路径重放窗口中对相应的程序段进行修改。如图6b为原错误程序段修改后的路径重放。

图6 一个盘型零件

三、结束语

利用VERICUT仿真校验NC程序可以在计算机上模拟整个NC机床的切削环境,而不必在实际的机床上运行。它降低甚至消除了在机床上验证输出的必要性。利用该技术不仅节省了编程和调试的时间,还减少了重复性的工作、消除了损坏零件及损坏机床的可能性。

机械加工工艺师手册 (好书推荐)

数控编程技巧:教你怎么样确定走刀路线和安排加工顺序

数控编程技巧:数控加工必备的基础知识

数控编程技巧:学数控必须掌握的几个要点(初学必读本)

NC程序作为数控加工的信息载体,其正确与否直接影响零件的加工质量。目前实际生产使用的NC程序,在投入加工之前通常采用机床空运行和样件试切,完成NC程序的校验。该方法加工准备周期长,生产成本高,难以实现数控机床的高效率。图形仿真是目前通用的NC校验方法,一般采用离线工作方式,用三维图形直观显示机床、刀具、工件以及辅助设备(机械手等),在计算机上对检验程序进行编译,并驱动图形加工系统进行准实时加工,检查NC代码中的语法和语意错误,实现干涉校验。NC程序仿真能直观安全地模拟、验证、分析切削过程,免去了以往样件生产的样件材料损耗、刀具磨损、机床清理等,从而缩短生产准备周期,降低成本。本文选择了两个典型零件作为研究对象,探讨利用计算机辅助技术生成NC程序,然后进行仿真校验的技术问题。


cnc编程自学?
要想学好CNC数控编程,画图技术那是必不可少的,也是不可以绕过的。03 第三步:熟练CNC代码的修改与手动编写。俗话说得好,打铁还需自身硬!作为一名编程员,如果你告诉别人,你是看不懂CNC代码的,那是一件十分奇怪的事情。其实我们平时学习的软件也只是一个辅助工具来的,目的也是为了生成NC加工代码...

这个数控铣床编程怎么编的啊?
1、从零件图开始,到获得数控机床所需控制介质的全过程称为程序编制,程序编制的方法有手工编程和自动编程。2、数控机床实现插补运算较为成熟并得到广泛应用的是直线插补和圆弧插补。3、自动编程根据编程信息的输入与计算机对信息的处理方式不同,分为数控语言编程(APT语言)、交互式图形编程。4、数控机床...

数控电脑编程是什么
数控系统的种类繁多,它们使用的数控程序的语言规则和格式也不尽相同,编制程序时应该严格按照机床编程手册中的规定进行。编制程序时,编程人员应对图样规定的技术要求、零件的几何形状、尺寸精度要求等内容进行分析,确定加工方法和加工路线;进行数学计算,获得刀具轨迹数据;然后按数控机床规定的代码和程序格式,将被加工工件的...

加工中心接收nc程序步骤以及一些小问题\/CNC问题\/fanuc oi mc_百度...
1)在电脑往机床发送NC程序时的步骤是什么,要按什么键之类的.2)如果我在加工的时候想先把机床暂停看看工件做得怎么样,要按哪个键?3)接上题,我在加工过程中暂停后,要按什么键后可以自由移动主轴,然后按开始主轴又回到原来暂停的地方继续加工?另外:急求fanuc oi mc 操作说明书!谢谢.我就是学UG编程的.我也知道...

数控技术联城技术是什么
但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出数倍,加之编程技术难度较大,制约了5轴联动机床的发展。当前由于电主轴的出现...STEP-NC的出现可能是数控技术领域的一次革命,对于数控技术的发展乃至整个制造业,将产生深远的影响。首先,STEP-NC提出一种崭新的制造理念,传统的制造理念中,...

Cimatron E6.0数控编程实用教程内容简介
这本实用教程深入介绍了Cimatron E 6.0中文版的数控编程技术,专为提升三坐标数控铣床(包括加工中心)的NC编程能力而设计。它详细讲解了如何通过CAD\/CAM工具进行高效编程,包括编程思路、方法和工艺处理的实践策略。教程还涵盖了Cimatron E软件的基础操作,重点讲解了常用的造型指令,让读者能够熟练掌握软件...

UG NX6数控编程实用教程内容简介
UG NX,以其强大的CAD\/CAM功能,深受工程师们的青睐。《UG NX6数控编程实用教程(第2版)》是一本实用指南,旨在深入讲解UG NX的数控编程技巧。本书内容涵盖了广泛的领域,首先,它从基础讲起,详细阐述了如何利用UG NX进行3种数控铣床(包括加工中心)的NC编程,包括编程基础知识、思路、方法和工艺...

数控技术是什么专业?
数控技术,英文名称:Numerical Control (简称NC),即采用电脑程序控制机器的方法,按工作人员事先编好的程式对机械零件进行加工的过程。专业核心课程:与主要实践环节:机械制图、机械设计基础、数控加工技术、数控加工编程与操作、数控原理与系统、CAD\/CAM应用、数控机床使用及维修、数控机床电气控制、工业企...

数控机床编程
本专业毕业生主要面向珠三角外资大中型企事业单位及国有企事业单位的操作、销售、工艺、设备维护等部门,主要培养数控机床操作人员、数控编程工艺人员、NC数控编程、数控设备维修人员、数控设备营销人员。此外还能从事CAD\/CAM软件应用,数控系统或设备的销售与技术服务工作,数控设备的安装调试及维护,以及车间生产组织与管理等...

数控机床的自动编程是怎么实现的?
对NC指令集进行校验及修改;通过通讯接口将计算机内的NC指令集送入机床的控制系统。整个数控自动编程系统分为前置处理和后置处理两大模块。实现自动编程的CAM软件常用的有UG,PRO\/E,MASTERCAM,Powermill,CAXA制造工程师等,可以实现多轴联动的自动编程并进行仿真模拟。

延庆县18760593115: 数控编程技术:NC程序仿真与校验
乘鹏十五: NC程序作为数控加工的信息载体,其正确与否直接影响零件的加工质量.目前实际生产使用的NC程序,在投入加工之前通常采用机床空运行和样件试切,完成NC程序的校验.该方法加工准备周期长,生产成本高,难以实现数控机床的高效率...

延庆县18760593115: 求给出NC系统的数控车床的程序 -
乘鹏十五: T0101 35度粗车外圆刀 M04S680 G0G99X50.0Z15.0 Z0.8 G1Z0.0F0.35 X0.0F0.08 G0X50.0Z0.8M08 G71U1.0R0.1 G71P1Q2U0.05W0.01F0.08 N1G0X18.0 G1Z0.0 X20.0W-1.0 Z-20.0 X21.8 X23.8W-1.5 Z-43.0 X28.0 X30.0W-1.0 Z-49.0 X36.0 ...

延庆县18760593115: 有没有软件可以效验数控程序呀? -
乘鹏十五: NC程序作为数控加工的信息载体,其正确与否直接影响零件的加工质量.目前实际生产使用的NC程序,在投入加工之前通常采用机床空运行和样件试切,完成NC程序的校验.该方法加工准备周期长,生产成本高,难以实现数控机床的高效率...

延庆县18760593115: NC编程需要学习哪些知识点? -
乘鹏十五: 高水平的NC程序员应当具备以下的条件:(1)掌握一定的基础知识,包括数控机床基本结构、NC加工基本原理、机械加工工艺及必要的CAD基础等. (2)全面地理解和掌握NC编程的基本过程和关键技术. (3)熟练运用一种CAD/CAM软件. (4)...

延庆县18760593115: 火焰数控切割机怎样编程? -
乘鹏十五: 编制数控切割机的加工程序通常有两种方法,手工编程和自动编程.1、手工编程大体过程为:分析零件图样——数控工艺处理——数学处理——编写NC代码——校验、调试NC程序——首件试切——误差分析,枯燥、繁琐、易出错、指令语法难记忆.2、自动编程时AutoCAD2000可直接由二维图形描述零件轮廓的图形实体直接生成数控加工代码,避免人工编程复杂的记忆.明显提高编程效率和编程质量.数控火焰切割机 ,切割具有大厚度碳钢切割能力,切割费用较低,但存在切割变形大,切割精度不高,而且切割速度较低,切割预热时间、穿孔时间长,较难适应全自动化操作的需要.它的应用场合主要限于碳钢、大厚度板材切割,在中、薄碳钢板材切割上逐渐会被等离子切割代替.

延庆县18760593115: 数控火焰切割机如何编程? -
乘鹏十五: 数控火焰切割机编程手工编程大体过程为:分析零件图样一数控工艺处理一数学处理一编写NC代码一校验、调试NC程序一首件试切一误差分析,枯燥、繁琐、易出错、指令语法难记忆.而对复杂的加工零件描述点过多更不适用.自动编程时...

延庆县18760593115: 什么是NC程序 -
乘鹏十五: NC (Numerical Control,数字控制,简称数控)指用离散的数字信息控制机械等装置的运行,只能由操作者自己编程 CNC(数控机床)是计算机数字控制机床(Computer number control)的简称,是一种装有程序控制系统的自动化机床.该控...

延庆县18760593115: NC程序有没有什么规律 -
乘鹏十五: 本文论述了NC程序模拟和校对系统的原理和实现过程,本系统实现了NC程序编辑器;NC代码基本语法检查;NC程序刀轨模拟、检验;NC代码与刀轨对照校验;打印报表等功能.以下对该系统论题的提出和开发过程及相关理论做一阐述. 随...

延庆县18760593115: 手工编写的N01C程序模拟 -
乘鹏十五: 对于这种情况,这里以一个用VB编写的纯文本数控加工程序为例加以说明.如图2所示的是一个已经粗加工的零件,要对其顶面进行精加工.顶面为一不能用CAD软件完成造型的三维空间曲面,原曲面上相应点的坐标是在三坐标测量机上测量得到的,只能根据这些坐标值进行编程,然后加工出曲面.用VB编写的数控程序有5万多行,程序的校验原先是在数控机床上对样件进行试切完成的,要经历试切→测量→修改程序→再试切的程序校验过程,整个过程既费工又费时,而且效果也不理想.改用VERICUT对NC程序进行仿真和校验,不仅节省时间和降低成本,而且效果很好.

延庆县18760593115: 数控自动编程 -
乘鹏十五: 一般中小型规模的厂子用的都是CAXA,国产比较便宜.也有用Pro\e的,不过一般都是盗版,因为正版实在是太贵了.而大一点的厂子就是用正版Pro\e(涉及名誉问题)的比较多了,因为毕竟要比CAXA功能更全面一点(并不是说我们国家做...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网