元素周期表到底有没有尽头?

作者&投稿:鞠京 (若有异议请与网页底部的电邮联系)
元素周期表有尽头么?最后一个元素是几号元素?~

元素周期表我们上初中的化学课时,就会接触到元素以及元素周期表,甚至还被老师要求背诵元素周期表的前20位。到了高中,不仅要横着背,而且还要竖着背。可以说,元素周期表就像是化学这个学科的武林秘籍。

事实也是如此,化学这门学科从一开始就和元素在打交道,甚至有一段时间,化学家们以抢新元素为乐,在上世纪初,基本上能抢到新元素,就意味着提前预定了诺贝尔奖。但背了这么长时间的元素周期表,不知道你有没有思考过这么一个问题,那就是元素周期表到底有没有尽头?
寻找“终极”元素实际上,关于“元素周期表有没有尽头”的问题,仅仅是理论假说就有好几个。但是科学其实是讲究实证的。再厉害的理论,也需要实验来证明。而这个问题在实验物理学眼里可以转换为寻找“终极”元素,说白了就是合成出新的更高顺位的元素。那这具体要咋操作呢?
这就需要从原子结构说起 ,我们都知道原子是由原子核和核外电子构成的,而原子核则是由质子和中子构成了。当然,质子和中子其实还可以再分成夸克。

而我们通常说的原子序数,实际上是原子核内质子的数量。氢原子其实就是带一个质子的原子,氦原子就是带两个质子的原子。根据中子数的不同,我们还会有不同的同位素。所以,越大号的元素,说白了就是质子数越多的。也就是说,想要获得大号元素,实际上需要通过核聚变反应。比如:最常见的就是氢核聚变,生成氦原子核。

但是要合成铁元素以上的原子核,就需要大量的能量。这一般是很难做到的。科学家想到的办法其实就是:碰撞。这有点类似于对撞机,只不过所用到的材料是不一样的。

说白了,就是让重元素离子进行对撞,然后来获取更高顺位的元素。可是这个办法其实并没有多好用,没有得到多好的效果。
于是,科学家又想了一些其他的办法,我们可以成为核融合,但这也分两种,一种叫做热熔合,这办法就是拿一个原子序数很高的原子核作为靶子,然后用氘核或者氦核去撞击这个原子核,看看能不能加点量。
另外一种办法叫做冷融合,同样是拿原子序数很大的原子核当靶子,不过这回用原子序数高的原子核去撞。科学家利用第二种方法确实找到了不少高顺位的元素。从93号元素镎开始,后面找到的元素基本上都是通过人工的方法合成的,这里多补充一句,93号元素之前也有一部分的元素是在自然界没找到的,是通过人工合成的。

那如今科学家合成到了几号元素呢?
答案是:118号元素。这是在2016年做到的,利用的是回旋加速器做出来的,但这个元素只存在了不到一毫秒的时间。

可是118号元素就是最后一位了吗?
答案是否定的,这也是科学界的主流看法,目前就要一些科学家在挑战更高顺位的元素。几年前,日本的理化研究所就曾经宣布合成119号元素。不过,这事还没有得到完全的确认。那么问题就来了,元素周期表到底有没有尽头呢?最后的元素序号应该是多少呢?
最后的元素序号应该是多少?客观地说,关于这个问题,科学家目前还没有形成统一的意见,有许多种说法,而且难分高下。要了解这个问题,我们还得从原子核的层面来说这件事。
正如上文提到的,原子核内有质子和中子,我们知道质子可是带正电的,根据同种电荷相排斥的原理,理论上质子之间是存在着静电斥力的。

因此,“质子聚在一个原子核内”这件事本身就很蹊跷。那到底是咋回事呢?这其实是因为有一个更大的“力”,把质子束缚在了原子核内,这个力叫做:强力。

科学家发现,在宇宙中存在着四种基本作用力,分别是强力,弱力,电磁力和引力。其中强力的强度是最大的,其次是电磁力,再然后是弱力,最后是引力。

强力虽然强度大,但是强力的作用范围很小,只有(10 ^-15)m。所以,质子和中子才会被束缚在很小的尺度内,最终形成原子核的结构。由于强力的作用范围很小,在这样的范围内能够塞下质子和中子的数量是有限的。
所以,原子核不可能无限大,一定不会超过(10 ^-15)m。因此,只要超过这个范围,强力就无法把质子束缚在原子核内了。所以,元素周期表一定是有尽头的。那这个尽头所对应的原子序数是多少呢?

我们都知道,第一位拿到诺贝尔物理学奖的女性是居里夫人,那你知道第二个是谁吗?她叫做:梅耶,她不仅是第二个拿到诺贝尔物理学奖的女性物理学家,她还曾参与制造了氢弹的项目,是学术成就极其高的科学家。

梅耶曾经提出过自己的“原子核模型”,她的理论实际上很复杂。我们简单来说:她认为原子核内部的结构类似于太阳系。内部有轨道,一个轨道上会有一个中子以及一个质子,质子和中子自身也会自转,有点类似于行星。梅耶就是因为这个理论获得了诺贝尔物理学奖。
后来,有一位科学家叫做格伦·西奥多·西博格,他在梅耶的“原子核模型”之上,建立了稳定岛理论,通过这个理论可以推导出,当原子核中的核子数是8,20,28,50,82,126时,原子核会处于稳定状态。也就是说,从稳定岛的理论当中,我们可以得到元素周期表的尽头可能是126号元素。

除了梅耶和格伦·西奥多·西博格的理论之外,物理学史上有个大神也参与过这个讨论,这位大神就是费曼,他也是诺贝尔奖获得者,同时参与过曼哈顿计划。

费曼认为元素周期标的尽头应该是137号元素。他的依据是精细结构常数。这个“精细结构常数”曾经让许多物理学家很崩溃,它是物理学家索末菲推导出来的一个无量纲的常数。费曼结合了精细结构常数以及波尔的“原子模型”理论,得到一个结果:如果原子序数高于137,那么1s轨道上的电子将会乱飞。

除了以上两个观点之外,实际上在学术圈还存在着一个观点,这个观点认为元素周期表的尽头是172号元素,也是目前比较主流的观点。这个观点的出发点也比较简单。主要是基于相对论,在相对论,爱因斯坦推导出了物质、信息和能量是无法超光速的,所以,电子的速度是不可能超过光速。当原子序数超过172号,就会出现最内层的电子超光速的情况,这也就违背了相对论。

所以,从目前的情况来看,科学家的理论推导得到了三个结果:126,137,172,。那元素周期表的尽头到底是什么,可能还是需要交给时间去检验。

元素周期表
我们上初中的化学课时,就会接触到元素以及元素周期表,甚至还被老师要求背诵元素周期表的前20位。到了高中,不仅要横着背,而且还要竖着背。可以说,元素周期表就像是化学这个学科的武林秘籍。


事实也是如此,化学这门学科从一开始就和元素在打交道,甚至有一段时间,化学家们以抢新元素为乐,在上世纪初,基本上能抢到新元素,就意味着提前预定了诺贝尔奖。但背了这么长时间的元素周期表,不知道你有没有思考过这么一个问题,那就是元素周期表到底有没有尽头?
寻找“终极”元素
实际上,关于“元素周期表有没有尽头”的问题,仅仅是理论假说就有好几个。但是科学其实是讲究实证的。再厉害的理论,也需要实验来证明。而这个问题在实验物理学眼里可以转换为寻找“终极”元素,说白了就是合成出新的更高顺位的元素。那这具体要咋操作呢?
这就需要从原子结构说起 ,我们都知道原子是由原子核和核外电子构成的,而原子核则是由质子和中子构成了。当然,质子和中子其实还可以再分成夸克。


而我们通常说的原子序数,实际上是原子核内质子的数量。氢原子其实就是带一个质子的原子,氦原子就是带两个质子的原子。根据中子数的不同,我们还会有不同的同位素。所以,越大号的元素,说白了就是质子数越多的。也就是说,想要获得大号元素,实际上需要通过核聚变反应。比如:最常见的就是氢核聚变,生成氦原子核。


但是要合成铁元素以上的原子核,就需要大量的能量。这一般是很难做到的。科学家想到的办法其实就是:碰撞。这有点类似于对撞机,只不过所用到的材料是不一样的。


说白了,就是让重元素离子进行对撞,然后来获取更高顺位的元素。可是这个办法其实并没有多好用,没有得到多好的效果。
于是,科学家又想了一些其他的办法,我们可以成为核融合,但这也分两种,一种叫做热熔合,这办法就是拿一个原子序数很高的原子核作为靶子,然后用氘核或者氦核去撞击这个原子核,看看能不能加点量。
另外一种办法叫做冷融合,同样是拿原子序数很大的原子核当靶子,不过这回用原子序数高的原子核去撞。科学家利用第二种方法确实找到了不少高顺位的元素。从93号元素镎开始,后面找到的元素基本上都是通过人工的方法合成的,这里多补充一句,93号元素之前也有一部分的元素是在自然界没找到的,是通过人工合成的。


那如今科学家合成到了几号元素呢?
答案是:118号元素。这是在2016年做到的,利用的是回旋加速器做出来的,但这个元素只存在了不到一毫秒的时间。


可是118号元素就是最后一位了吗?
答案是否定的,这也是科学界的主流看法,目前就要一些科学家在挑战更高顺位的元素。几年前,日本的理化研究所就曾经宣布合成119号元素。不过,这事还没有得到完全的确认。那么问题就来了,元素周期表到底有没有尽头呢?最后的元素序号应该是多少呢?
最后的元素序号应该是多少?
客观地说,关于这个问题,科学家目前还没有形成统一的意见,有许多种说法,而且难分高下。要了解这个问题,我们还得从原子核的层面来说这件事。
正如上文提到的,原子核内有质子和中子,我们知道质子可是带正电的,根据同种电荷相排斥的原理,理论上质子之间是存在着静电斥力的。


因此,“质子聚在一个原子核内”这件事本身就很蹊跷。那到底是咋回事呢?这其实是因为有一个更大的“力”,把质子束缚在了原子核内,这个力叫做:强力。


科学家发现,在宇宙中存在着四种基本作用力,分别是强力,弱力,电磁力和引力。其中强力的强度是最大的,其次是电磁力,再然后是弱力,最后是引力。


强力虽然强度大,但是强力的作用范围很小,只有(10 ^-15)m。所以,质子和中子才会被束缚在很小的尺度内,最终形成原子核的结构。由于强力的作用范围很小,在这样的范围内能够塞下质子和中子的数量是有限的。
所以,原子核不可能无限大,一定不会超过(10 ^-15)m。因此,只要超过这个范围,强力就无法把质子束缚在原子核内了。所以,元素周期表一定是有尽头的。那这个尽头所对应的原子序数是多少呢?


我们都知道,第一位拿到诺贝尔物理学奖的女性是居里夫人,那你知道第二个是谁吗?她叫做:梅耶,她不仅是第二个拿到诺贝尔物理学奖的女性物理学家,她还曾参与制造了氢弹的项目,是学术成就极其高的科学家。


梅耶曾经提出过自己的“原子核模型”,她的理论实际上很复杂。我们简单来说:她认为原子核内部的结构类似于太阳系。内部有轨道,一个轨道上会有一个中子以及一个质子,质子和中子自身也会自转,有点类似于行星。梅耶就是因为这个理论获得了诺贝尔物理学奖。
后来,有一位科学家叫做格伦·西奥多·西博格,他在梅耶的“原子核模型”之上,建立了稳定岛理论,通过这个理论可以推导出,当原子核中的核子数是8,20,28,50,82,126时,原子核会处于稳定状态。也就是说,从稳定岛的理论当中,我们可以得到元素周期表的尽头可能是126号元素。


除了梅耶和格伦·西奥多·西博格的理论之外,物理学史上有个大神也参与过这个讨论,这位大神就是费曼,他也是诺贝尔奖获得者,同时参与过曼哈顿计划。


费曼认为元素周期标的尽头应该是137号元素。他的依据是精细结构常数。这个“精细结构常数”曾经让许多物理学家很崩溃,它是物理学家索末菲推导出来的一个无量纲的常数。费曼结合了精细结构常数以及波尔的“原子模型”理论,得到一个结果:如果原子序数高于137,那么1s轨道上的电子将会乱飞。


除了以上两个观点之外,实际上在学术圈还存在着一个观点,这个观点认为元素周期表的尽头是172号元素,也是目前比较主流的观点。这个观点的出发点也比较简单。主要是基于相对论,在相对论,爱因斯坦推导出了物质、信息和能量是无法超光速的,所以,电子的速度是不可能超过光速。当原子序数超过172号,就会出现最内层的电子超光速的情况,这也就违背了相对论。


所以,从目前的情况来看,科学家的理论推导得到了三个结果:126,137,172,。那元素周期表的尽头到底是什么,可能还是需要交给时间去检验。

根据科学家的探索,大多说的科学家都认为元素周期表是有尽头的。首先有普遍理论认为,元素周期表结束于172号元素附近。在这个元素的周围可能会发生一些奇怪的甚至有点恐怖的量子力学的特征,当形成正负电子对时,原子核本身可能会开始消耗电子,摧毁电子对,将它变成中子。不过有很多科学家认为,在172号元素前,这些元素的原子核就不稳定了,基本立刻就衰变了。120号左右的元素,尤其难合成,原因有很多的,要合成新元素,必须有足够的靶原子,而现在的科学技术,我们还有没有能够大规模的生产靶原子的能力。在120号元素后,这些元素的寿命都会急剧减少,即便你能合成出一个,此时能检测出来的都是难上加难。

这时候科学家们就利用了稳定的概念,因为他们认为,利用这些理论,如果你碰巧选对了一些他们称之为魔数的质子和中子,原子核就会特别的稳定。但是他们可能看到异乎寻常而且有趣的特征显现出来,这时候也是能达到他们想要的稳定过程的!这种理论的利用,最典型的应该就是汞元素的出现吧,而这个元素又是液体金属,科学家们利用它的性质不断的探索,最后也形成了118号元素。

众所周之,元素周期表是门捷列夫发明的,科学家们在他的发现元素的规律和方法的指导下,不断的去做合成元素,在二战期间,科学家们就已经开始将这些元素进行了分类,并且发现了很多新的元素,只是在二战结束后很长的时间才允许公布。

目前科学家们对这些新的元素很满意都依据原子序数排在元素周期表中,就是基于原子中质子的数量,但是这些新元素,有些个例中,已经背离了元素周期表的原则,化学性质和物理性质都对不上了,所以他们认为继续的合成元素,已经不会符合原来的规律,元素周期表是有尽头的。



元素周期表最后一个元素的序号应该是多少?

我们就来探讨一下这个问题,自从门捷列夫搞出元素周期表,科学家就把元素周期表当完形填空,没多久就被填的差不多了。于是,元素周期表填空大赛就华丽丽转身为极限挑战赛,那科学家要挑战什么极限呢?

寻找序号更大的元素

这个时候科学家的挑战就是寻找更高顺位的元素。不过,他们并不是跑遍整个地球去找这些元素,而是在实验室里面,就靠着最原始的办法:撞!

科学家一开始用的死回旋加速器,让重元素离子进行对撞,能不能有个好结果完全凭运气。

结果,大家发现这根本不行,于是纷纷想出路。

美国科学家想到的办法叫做热熔合,就是用比较轻的离子,比如:氘,氦核去撞击超重的元素,看看能不能给这个超重元素加点量,因为这个办法要用大量的能量,所以叫做热熔合。

俄国、德国想到的办法叫做冷熔合,主要是相比前者,这个方法用不了很多能量,大致的办法就是用大号原子核当靶子,然后也那大号原子核去撞,试图搞出更大号的。

在这场PK中,美国完败,他们的办法太low,根本起不了什么作用。俄国和德国一口气搞出了好几个元素。后来美国也用起来冷熔合,全球科学家一起向更大号元素的方向进发。经过科学家们一波波的神操作。

2016年,美国劳伦斯利弗莫尔国家实验室科学家与俄罗斯科学家合作,利用俄国的回旋加速器,成功搞出了118号元素,不过这个元素存在的时间不足1毫秒。

可是,118号元素真的就是最后一号元素了么?你想多了...

没过多久,2017年12月份,日本的理化学研究所宣布合成了119号元素。

所有的科学家不得不开始深入思考周期表最后一个元素的序号是多少?

周期表最后一个元素的序号是多少?

关于这个问题,科学家争论了很久,有好几种说法。不过,不知道你是不是有个疑问,难道原子核不可以无限大下去么?

实际上是没办法无限大的。具体的原因是这样的,原子核其实不像很多人想象中的那样,有个球形壳包裹着里面的质子和中子。实际上质子和中子是靠“强相互作用力”给捆在一起的。这个力超级大,但作用距离特别短,只有在(10 ^-15)m。

只要大于这个范围,强力不能把质子和中子牢牢地捆住了。(多说一个题外话,强力在目前的理论框架中是依靠介子来传递的。)

因为强力如此短,一旦质子和中子数太多,那就捆不起来了,这时候就会发生衰变。所以原子核就一定大不了,原子核既然不可能大过强力的尺度,也就限定了原子序数的上限。那这个上限在哪里呢?

有很多说法,我们来讲一位伟大的女科学家居里夫人,oh,不,说错了,是梅耶,大家不要小瞧她,她可是第二位拿到诺贝尔物理学奖的女性,还参与制造了氢弹。而且,她的学术水平强到爆炸,之所以我们不了解她,是因为她研究的东西太晦涩难懂了。

当时人们发现,特定数量的核子能使原子核特别稳定,但搞不清楚为什么。后来,梅耶提出了自己的原子核模型,她认为原子核里面有点类似于太阳系的情况,质子和中子就像绕太阳旋转的行星,自己也会自转,一条轨道上一般会成对出现一个质子和一个中子。

梅耶是向别人这么解释她的模型的。

”想像一屋子的人跳舞。 假使他们绕着圈转,一圈围着一圈。 然后想像每一圈里一对对的舞者,一个顺时针绕转、一个逆时针转。 绕着圈转时舞者也在旋转,每一对都同时旋转与绕圈。 但只有部分舞者逆时针绕、逆时针转。其余舞者顺时针转、顺时针绕。 两者数量一样多。“

这里理论帮助她拿到了诺贝尔奖,还解决了为什么特定数量的核子使原子核特别稳定的问题。后来有位科学家在她的模型之上,建立了稳定岛模型,从这个模型推演出了这么一个结果,2、8、20、28、50、82、126的核子数可以让原子核很稳定。所以就有人认为,可能序号最大的是126号的元素,这个理论的提出者叫做格伦·西奥多·西博格。

当然,研究这个问题的大咖还有很多,其中最具偶像的气质当属费曼了,他认为是137号。作为科学家,人家可不是乱猜的,也是拿出了自己的依据,还是让人很无语的那种依据。这个东西叫做:精细结构常数。通过精细结构常数和波尔的原子模型,费曼推导出,只要大于137号元素,1s轨道上的电子就会不受控制乱飞。(精细结构常数这个东西是“物理学界最大的迷雾”,我们下期会详细去讲,但137的猜测并不能够在理论上站得住脚。)

被科学家广泛接受的是从相对论的基本假设中推导出来的结果,172号!相当大有木有!

那这个172号是咋来的呢?光速!

相对论规定信息、物质、能量不能超过光速,也就是说核外电子的运动速度不能超过光速,如果质子数超过了172号,那原子核和电子之间的电磁力,很可能会让电子速度超过光速。这就和相对论矛盾了,所以这是不可能的。

所以,我们来总结一下:

1,根据稳定岛理论推测,126号元素是特别稳定的元素,所以有可能是最后一位元素。

2,根据费曼的推测,137号元素是最后一位元素,因为精细结构常数的存在。

3,按照相对论推导出,172号是最后一位元素,这才能保证原子核外电子不超光速。

那究竟是126号、137号还是172号?其实还没有统一的结论,只能等待时间去验证了。



是没有尽头的,是无穷无尽的,一直到现在是没有一个人可以算到尽头的。

理论上,没有尽头,
事实上,现在发现的元素也不多。

这个是没有尽头的,因为宇宙无穷大,有很多元素是没有被发现的。


元素周期表的排列有什么规律?
1、原子半径由左到右依次减小,上到下依次增大。2、元素周期表有7个周期,16个族。每一个横行叫作一个周期,每一个纵行叫作一个族(VIII族包含三个纵列)。这7个周期又可分成短周期(1、2、3)、长周期(4、5、6、7)。3、同一周期内,从左到右,元素核外电子层数相同,最外层电子数依次...

元素周期表有多少个周期多少个族
2、元素周期表中共有118个元素,这些元素按照原子序数的大小依次排列。其中,氢元素以原子序数1开始,最重的元素是118号元素。周期表中的每一行代表一个“周期”,每一列代表一个“族”。3、周期表的每一周期都呈现出一种规律性。在第一周期中,所有元素都是非金属,第二和第三周期中仍然是非金属...

元素周期表
直到1869年,他将当时已知的仍种元素的主要性质和原子量,写在一张张小卡片上,进行反复排列比较,才最后发现了元素周期规律,并依此制定了元素周期表。 先背熟元素周期表,然后就会慢慢找出各族元素的规律,以后见到没有学过的元素只要是同一族的都会知道有什么特点,有什么化学性质,那就不是可以举一反三了 横着看叫...

元素周期表1至36号元素各有什么?
一般来说,新填入的电子都是填在能量最低的空轨道上的。2、洪德规则 电子尽可能的占据不同轨道,自旋方向相同。3、泡利不相容原理 在同一体系中,没有两个电子的四个量子数是完全相同的。4、能级交错 电子层数较大的某些轨道的能量反低于电子层数较小的某些轨道能量的现象。

元素周期表共有几个周期?
元素周期表中共有7个周期。在元素周期表中各周期为横向排列,同一横向者为同一周期。其中第一周期只有两种元素;第二周期和第三周期各有8种元素;第四周期和第五周期各有18种元素;第六周期有32种元素。第七同期,理论上也应该有32种元素,但目前这一周期中的元素还没有完全填满,仍在按照顺序通过...

元素周期表有多少元素?
(2)“阴前阳下,径小序大”规律:与稀有气体元素同周期的阴离子,该稀有气体元素下周期的元素的阳离子以及该稀有气体元素的原子,三者具有相同的电子层结构,原子序数大者,粒子的半径小.例如:r(Ca2+)<r(K+)<r(Ar)<r(Cl-)<r(S2-)(3)序差“左上右下”规律:元素周期表...

初三化学元素周期表有多少个
第一周期元素:1 氢(qīng) 2 氦(hài) 第二周期元素:3 锂(lǐ) 4 铍(pí) 5 硼(péng) 6 碳(tàn) 7 氮(dàn) 8 氧(yǎng) 9 氟(fú) 10 氖(nǎi) 第三周期元素:11 钠(nà) 12 镁(měi) 13 铝(lǚ) 14 硅(guī) 15 磷(lín) 16 硫(liú) 17 氯(lǜ) ...

元素周期表几个周期
元素周期表七个周期,一般来说,到第七周期后面就基本上都是人造元素了,人造元素极其不稳定且需要大量能量,故元素周期表应是在第七周期截止,总共118个元素。第一周期:2个 第二周期:8个 第三周期:8个 第四周期:18个 第五周期:18个 第六周期:32个 第七周期:32个 ...

元素周期表有7个周期,16个族.有什么特点
元素周期表有7个周期,16个族。每一个横行叫作一个周期,每一个纵行叫作一个族。这7个周期又可分成短周期(1、2、3)、长周期(4、5、6、7)。共有16个族,又分为7个主族(ⅠAⅡA ⅢA ⅣA ⅤA ⅥA ⅦA), 7个副族(ⅠB ⅡB ⅢB ⅣB ⅤB ⅥB ⅦB),一个第Ⅷ族(包括三...

元素周期表到底是咋来的?
学者们努力了1000多年,一直到拉瓦锡和道尔顿时期才有了进展,也正式使化学成为一门科学理论。 门捷列夫之前 其中拉瓦锡将自然界的物质分解成基本元素,并且对元素的性质进行了一系列的检验。 最后,拉瓦锡提出了历史上第一个化学元素表。 不过要注意的是,这时候还不是化学元素周期表。因为这张表并没有...

城东区13558707040: 元素周期表究竟有没有尽头? -
村终正天: 元素周期表没有尽头.在20世纪30年代时人们认为96号元素是周期表尽头.但在之后50年时间内连续合成50号元素.人们于是猜想在这之后还有许许多多超重元素原子. 而且人类还认为反原子(即负电质子与正电电子组成的原子)会使元素周期表向负方向发展.这还需要许许多多人来探究.

城东区13558707040: 化学元素周期表有没有尽头? -
村终正天: 个人认为没有尽头,只是现在还没发现

城东区13558707040: 元素周期表有尽头吗? -
村终正天: 没有...元素周期表是没有尽头的,虽然很难填满,但可以一直算到10周期(一个周期200个元素),100周期(一个周期20000个元素),200周期(一个周期80000个元素)....现在已经定名的最大是110号元素.符号为Ds,中文名达(加金属旁) 111号元素初步命名为Rg,中文名仑(加金属旁) 制得最大的116号元素. 有说法说制出了118号元素,但没有得到证实

城东区13558707040: 元素周期表有尽头吗?现在人工合成了哪些112号以后的元素? -
村终正天:[答案] 没有...元素周期表是没有尽头的,虽然很难填满,但可以一直算到10周期(一个周期200个元素),100周期(一个周期20000个元素),200周期(一个周期80000个元素).现在已经定名的最大是110号元素.符号为Ds,中文名达(加金属旁)11...

城东区13558707040: 元素周期表会有终点吗元素的种类是无限个吗?如果不是,最多有几个周期 -
村终正天:[答案] 元素的种类目前已经发现和制造出来的一共是一百一十多种,共七个周期,每个周期的元素种类数为 第一周期 2,第二周期 8,第三周期 8,第四周期 18,第五周期 18,第六周期 32,第七周期还没排满呢,理论上元素周期表示不会有终点的!

城东区13558707040: 元素周期表会有尽头吗?我们的课本中元素周期表的后面是个省略好,所以就有了上面的问题. -
村终正天:[答案] 应该是有尽头的,自然界中的元素是有限的

城东区13558707040: 元素周期表会有终点吗 -
村终正天: 元素的种类目前已经发现和制造出来的一共是一百一十多种,共七个周期,每个周期的元素种类数为 第一周期 2,第二周期 8,第三周期 8,第四周期 18,第五周期 18,第六周期 32,第七周期还没排满...

城东区13558707040: 元素周期表会有尽头吗? -
村终正天: 应该是有尽头的,自然界中的元素是有限的

城东区13558707040: 元素周期表尽头在哪? -
村终正天: 1980年,德国科学家已经宣布合成了109号元素,至此,世界已经发现了109种元素.那么,究竟还有多少个元素没被发现呢?元素周期表的终点又在哪里呢? 曾经在很长的一个时间里,科学家没有再发现一个新元素,元素周期表在92号元素--...

城东区13558707040: 元素周期表有极限吗 -
村终正天: 1.我认为要一分为2地看待:2.如果像Uuu,Uun,Uuq等元素也叫元素,那么元素周期表是没有极限的3.如果说对人有用的元素,那么肯定有极限,质子数更多的元素都是放射性元素了,有的只存在0.几秒,根本不能叫真正意义上的元素4.总结,个人看来,化学是为人服务的,使元素周期表无限大是没有意义的.如果真需要这样一个表格,那是研究物理的人做的事,在这里就不多探究了 我说了大概,自己补充内容

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网