紫外吸收光谱分析法的基本原理是什么?

作者&投稿:倚沿 (若有异议请与网页底部的电邮联系)
~ 紫外吸收光谱法基本原理
一、电子跃迁
最常碰到的电子跃迁类型

二、发色团、助色团和吸收带
1、发色团
指具有跃迁的不饱和基团,这类基团与不含非键电子的饱和基团成键后,使化合物的最大吸收位于200nm或200nm以上,摩尔吸光系数较大(一般不低于5000),简单的生色团由双键或三键体系组成.现简要讨论含生色团的不同类型有机化合物的电子吸收光谱.

(1)乙烯及其衍生物
简单无环烯烃,如乙烯的跃迁的最大吸收在180nm附近,有烷基取代基时,由于碳原子的sp2杂化,最大吸收略有红移,这种现象的实质是诱导效应或超共轭效应引起的.
共轭生色团
含一个以上生色团的分子的吸收带可能是彼此隔开的生色团吸收的叠加,或可能是生色团的相互作用的结果.即使两个生色团为一个单键所隔开.也会发生共轭作用,于是电子吸收光谱与孤立的生色团的吸收带相比,呈现出明显的变化.
最简单的一个例子是1,3一丁二烯CH2=CH—CH=CH2,该分子中,两个C=C键为一个单键隔开,由于共轭作用,该分子给出的吸收光谱向低能量方向移动.在共轭体系中,电子离域于至少四个原子之间;这导致了跃迁能量的下降,同时由于跃迁几率增加而使摩尔吸光系数也有所增加.共轭作用对跃迁的影响相当大.对乙烯(193nm)1,3—丁二烯(217nm),已三烯(258nm),辛四烯(300nm)系列来说,可以看到:随该系列每个化合物中C=C双键的逐渐增加,产生红移并伴有摩尔吸光系数的增加.
(2)多炔和烯炔烃
简单三键的跃迁在175nm处有最大吸收,摩尔吸光系数约为6000.
共轭炔的电子吸收带也向低能量方向移动,但是,其摩尔吸光系数则要比共轭烯的低得多.例如,乙烯乙炔CH2=CH—C=CH所呈现的吸收带在1,3一丁二烯附近(=219nm)但其摩尔吸光系数仅为6500,而1,3一丁二烯的是21000.当共轭体系扩展到3至6个三键时,则产生高强度吸收带,摩尔吸光系数达105数量级.含双键的炔烃共轭体系,其紫外吸收光谱与多炔烃相似,在碳链长度相同的情况下,烯炔烃的吸收强度比多炔烃大,且最大吸收波长进一步红移.
(3)羰基化合物
羰基化合物与二烯类、非极性不饱和化合物不同,前者的吸收带强烈地受到溶剂性质的影响,且随α取代基的增加,跃迁的吸收带逐渐红移;后者一般不受α取代基的影响.在饱和有机化合物分子中含有酸、酯、内酯和内酰胺等结构单元,羰基的吸收一般在200—205nm.但是,当分子中的双键与羰基共轭时,其吸收带显著增强.
(4)芳烃和杂环化合物
饱和五元和六元杂环化合物在200nm以上的紫外可见区没有吸收,只有不饱和的杂环化合物即芳香杂环化合物在近紫外区有吸收.这种吸收由 跃迁和跃迁产生的.
(5)偶氮化合物
含—N=N—键的直链化合物产生的低强度的吸收带位于近紫外区和可见区.长波处的吸收带被认为是由跃迁所致.对脂肪族的叠氮化合物来说,285nm处低能量吸收带被认为是电子跃迁所致,而215nm处的吸收带则被认为是s-p→跃迁所致.
2、助色团
指带有孤对电子的基团,如—OH —OR、—NH2、—NHR、—Cl、—Br—I等,它们本身不会使化合物分子产生颜色或者不能吸收大于200nm的光,但当它们与发色团相连时,能使发色团的吸收带波长(λmax)向长波方向移动,同时使吸收强度增加.

(1)吸电子助色团
吸电子助色团是一类极性基团,如硝基中氧的电负性比氮大,故氮氧键是强极性键,当—NO2引入苯环分子中,产生诱导效应和共轭效应,是苯环电子密度向硝基方向移动,且环上各碳原子电子密度分布不均,分子产生极性.
(2)给电子助色团
给电子助色团是指带有未成键p电子的杂原子的基团,当它引入苯环中,产生p-π共轭作用,如氨基中的氮原子含有未成键的电子,它具有推电子性质,使电子移向苯环,同样使苯环分子中各碳原子电子密度分布不均,分子产生偶极.
无论是吸电子基或给电子基,当它与共轭体系相连,都导致大π键电子云流动性增大,分子中的跃迁的能级差减少,最大吸收向长波方向移动,颜色加深.同时也指出助色团对苯衍生物的助色作用,不仅与基团本身的性质有关,而且与基团的数量及取代位置有关.
3、红移、蓝移、增色效应和减色效应
在有机化合物中,因取代基的引入或溶剂的改变而使最大吸收波长发生移动.向长波方向移动称为红移,向短波方向移动称为蓝移.
由于化合物分子结构中引入取代基或受溶剂改变的影响,使吸收带强度即摩尔吸光系数增大或减小的现象称为增色效应或减色效应.
三、吸收带
1、R吸收带
由化合物的跃迁产生的吸收带.具有杂原子和双键的共轭基团,如C=O、-NO、-NO2、-N=N-、-C=S 等.其特点是:跃迁的能量最小,处于长波方向,一般λmax在270nm以上,但跃迁几率小,吸收强度弱,一般摩尔吸光系数小于100.
2、K吸收带
是由共轭体系中的跃迁产生的吸收带.其特点是:吸收峰的波长比R带短,一般λmax >200nm,但跃迁几率大,吸收峰强度大.一般摩尔吸光系数大于104,随着共轭体系的增大,π电子云束缚更小,引起跃迁需要的能量更小,K带吸收向长波方向移动.
K吸收带是共轭分子的特征吸收带.借此可判断化合物中的共轭结构.这是紫外光谱中应用最多的吸收带.
3、B吸收带
由苯环本身振动及闭合环状共轭双键跃迁而产生的吸收带,是芳香族的主要特征吸收带.其特点是:在230-270nm呈现一宽峰,且具有精细结构,常用于识别芳香族化合物.
4、E吸收带
也是芳香族化合物的特征吸收带,可以认为是苯环内三个乙烯基共轭发生的跃迁而产生的.E带可分为E1和E2吸收带,都属于强吸收.
红外吸收光谱图与其紫外吸收曲线比较,红外吸收光谱曲线具有如下特点:第一,峰出现的频率范围低,横坐标一般用微米(μm)或波数(cm-1)表示,第二,吸收峰数目多,图形复杂;第三,吸收强度低.吸收峰出现的频率位置是由振动能级差决定,吸收峰的个数与分子振动自由度的数目有关,而吸收峰的强度则主要取决于振动过程中偶极矩的变化以及能级的跃迁概率.
一、双原子分子的振动
(一)谐振子振动
将双原子看成质量为m1与m2的两个小球,把连接它们的化学键看作质量可以忽略的弹簧,那么原子在平衡位置附近的伸缩振动,可以近似看成一个简谐振动.
在通常情况下,分子大都处于基态振动,一般极性分子吸收红外光主要属于基态(ν =0)到第一激发态(ν=1)之间的跃迁,即△ν=1.
非极性的同核双原子分子在振动过程中,偶极矩不发生变化,△v=0,△E振=0,故无振动吸收,为非红外活性.
根据红外光谱的测量数据,可以测量各种类型的化学键力常数k.一般来说,单键键力常数的平均值约为5 N•cm-1,而双键和三键的键力常数分别大约是此值的二倍和三倍.相反,利用这些实验得到的键力常数的平均值和方程(10-5)或(10-6),可以估算各种键型的基频吸收峰的波数.例如:H-Cl的k为5.1 N•cm-1.根据(10-6)式计算其基频吸收峰频率应为2 993 cm-1,而红外光谱实测值为2885.9 cm-1.
化学键的力常数k越大,原子折合质量μ越小,则化学键的振动频率越高,吸收峰将出现在高波数区;相反,则出现在低波数区.例如,≡C—C≡,═C═C═,—C≡C—,这三种碳—碳键的原子质量相同,但键力常数的大小顺序是:叁键>双键>单键,所以在红外光谱中,吸收峰出现的位置不同:C≡C约(2 222 cm-1)> C═C(约1 667 cm-1)>C—C(约1 429 cm-1).又如,C—C,C—N,C—O键力常数相近,原子折合质量不同,其大小顺序为C—C


原子吸收光谱法定量分析方法
1、标准曲线法 :先配制相同基体的含有不同浓度待测元素的系列标准溶液,在选定的实验条件下分别测其吸光度,以扣除空白值之后的吸光度为纵坐标,标准溶液浓度为横坐标绘制标准曲线。在同样操作条件下测定试样溶液的吸光度,从标准曲线查得试样溶液的浓度。2、标准加入法 :适用于试样的基体组成复杂且对...

红外为什么不能定量
实验误差较大。红外吸收光谱分析法不作定量分析的原因是其灵敏度较低,实验误差较大,所以一般不用作定量分析。

非水溶性试样如何用紫外吸收光谱法测定?
光谱测定、数据处理与分析等步骤。通过选择合适的有机溶剂、制备均匀样品溶液、调整适宜的浓度范围、进行多次重复实验和误差分析等措施,可以获得准确可靠的实验结果。同时,不断探索新型样品制备技术和仪器设备的应用,将有助于提高紫外吸收光谱法在非水溶性试样测定中的准确性和可靠性。

原子吸收光谱分析法和可见分光光度法的异同
8、检测时间:原子吸收分光光度计分析速度较快,操作简便,半个小时内能连续测定几十个试样中的5、6种元素。紫外可见分光光度计由于有显色过程,测量时间相对而言较长,操作比较麻烦。9、应用对象:原子吸收分光光度计针对于金属微量元素的定量分析,火焰法:液样含量范围通常在0.1PPM~15PPM 之间(个别...

原子吸收光谱法有什么优缺点?
准确分析原子吸收光谱需要结合各种背景知识和实验技巧,有计划地选择试验数据和样品分析规律,对干扰因素的影响进行分析和修正,以提高原子吸收光谱分析的准确性和精确度。原子吸收光谱法 原子吸收光谱法是一种利用原子在高温火焰或感电器产生的电子和进入激发状态的原子,经过光的激发,从而吸收特定波长的光线...

原子吸收光谱原理
2、分析范围广:发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。另外,火焰发射光度分析仅能对元素的一部分加以测定。原子吸收光谱法的缺点:1、不能多元素同时分析。测定元素不同,必须更换光源灯。2、标准工作曲线的线性范围窄(一般在一个数量级范围)。3、由于原子化...

光学分析法有哪些类型?
非光谱法(或称一般光学分析法)检测被测物质的某种物理光学性质,进行定量、定性分析的方法。如折射法、旋光法、园二色散法及浊度法等。光谱法利用物质的光谱特征,进行定性、定量及结构分析的方法称为光谱法或光谱分析法。按物质能级跃迁的方向,可分为吸收光谱法(如紫外-可见分光光度法、红外分光光度...

【材料测试】材料成分分析方法大全,轻松了解材料信息
深入探索:光谱分析的奥秘 光谱分析法如X射线、俄歇电子、XPS和ISS,分别揭示了材料的化学成分、结构深度,它们各自有独特的适用范围,从近红外到远红外,为各种材料提供了全面的视图。红外与拉曼的交响曲 红外吸收光谱和拉曼光谱,如同天籁之音,无需繁琐准备,就能揭示固体、液体、气体的结构特性,广泛应用...

原子吸收光谱分析的光源应当符合哪些条件
2、原子化器。原子化器的功能是提供能量,使试样干燥、蒸发和原子化。在原子吸收光谱分析中,试样中被测元素的原子化是整个分析过程的关键环节。实现原子化的方法,常用有两种:一种是火焰原子化法(火焰原子化器),是原子光谱分析中早使用的原子化方法,至今仍在广泛地被应用;另一种是非火焰原子化法,...

光谱分析法和色谱分析法的区别,说明其适用范围及优越性,下午考试,帮帮...
对于液体样品可选择隔膜垫进样方式,气体样品可采用六通阀或吸附热解析进样方法,一般色谱仅配置隔膜垫进样方式,所以气体样品可采用吸附-溶剂解析-隔膜垫进样的方式进行分析。根据待测组分性质选择适合的色谱柱,一般遵循相似相容规律。分离非极性物质时选择非极性色谱柱,分离极性物质时选择极性色谱柱。色谱柱确定后,根据...

清原满族自治县15272659680: 紫外吸收光谱的基本原理是什么 -
茅恒恩泽:[答案] 利用物质的分子或离子对紫外和可见光的吸收所产生的紫外可见光谱及吸收程度可以对物质的组成、含量和结构进行分析、测定、推断.不同官能团,吸收的波长不一样.

清原满族自治县15272659680: 紫外可见吸收光谱法的工作原理 -
茅恒恩泽:[答案] 紫外-可见吸收光谱的产生及基本原理2.1 物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法.当某种物质受到光的照射时,物质分子就会与光发生碰撞,其...

清原满族自治县15272659680: 紫外吸收光谱的基本原理是什么 -
茅恒恩泽: 利用物质的分子或离子对紫外和可见光的吸收所产生的紫外可见光谱及吸收程度可以对物质的组成、含量和结构进行分析、测定、推断.不同官能团,吸收的波长不一样.

清原满族自治县15272659680: 简述紫外光谱分析的基本原理 -
茅恒恩泽: 原发布者:ppt搜索者第二章紫外光谱2.1紫外光谱的基本原理2.1.1紫外光谱的产生、波长范围紫外吸收光谱是由于分子中价电子的跃迁而产生的.分子中价电子经紫外或可见光照射时,电子从低能级跃迁到高能级,此时电子就吸收了相应波长...

清原满族自治县15272659680: 紫外吸收峰300nm时,可能是哪种物质 -
茅恒恩泽: 可能是辛四烯. 请参考如下资料: 紫外吸收光谱法基本原理一、电子跃迁最常碰到的电子跃迁类型 二、发色团、助色团和吸收带1、发色团指具有跃迁的不饱和基团,这类基团与不含非键电子的饱和基团成键后,使化合物的最大吸收位于...

清原满族自治县15272659680: 光谱分析法是利用光的什么原理来分析 -
茅恒恩泽: 光谱分析是利用物质与光(电磁波)的相互作用,来检测物质吸收电磁波后,电磁波的变化量,从而反演出物质结构的信息.

清原满族自治县15272659680: 紫外光谱适合于分析哪些类型的化合物 -
茅恒恩泽: 紫外吸收光谱在分析上的应用: (1)紫外光谱可以用于有机化合物的定性分析,通过测定物质的最大吸收波长和吸光系数,或者将未知化合物的紫外吸收光谱与标准谱图对照,可以确定化合物的存在. (2)可以用来推断有机化合物的结构,例如确定1,2-二苯乙烯的顺反异构体. (3)进行化合物纯度的检查,例如可利用甲醇溶液吸收光谱中在256nm处是否存在苯的B吸收带来确定是否含有微量杂质苯. (4)进行有机化合物、配合物或部分无机化合物的定量测定,这是紫外吸收光谱的最重要的用途之一.其原理为利用物质的吸光度与浓度之间的线性关系来进行定量测定.

清原满族自治县15272659680: 紫外吸收光度法的基本原理和它与其他光度分析法的异同之处?《仪器分析》 -
茅恒恩泽:[答案] 分光光度法 在分光光度计中,将不同波长的光连续地照射到一定浓度的样品溶液时,便可得到与众不同波长相对应的吸收强度.如以波长(λ)为横坐标,吸收强度(A)为纵坐标,就可绘出该物质的吸收光谱曲线.利用该曲线进行物...

清原满族自治县15272659680: 红外 紫外 荧光 原子吸收光谱 原理 -
茅恒恩泽: 紫外-可见吸收光谱的产生及基本原理 2.1 物质对光的选择性吸收分子的紫外-可见吸收光谱是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析方法.当某种物质受到光的照射时,物质分子就会与光发生碰撞,其结果是光子的...

清原满族自治县15272659680: GB原子吸收法或紫外分光光度法?知道的大大伸个手啊 -
茅恒恩泽:[答案] (一)紫外-可见分光光度法 ultravioletvisible absorption spectroscopy 根据被测量物质分子对紫外-可见波段范围(150~800纳米)单色辐射的吸收或反射强度来进行物质的定性、定量或结构分析的一种方法.分光光度测量是关于物质分子对不同波长和...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网