基因克隆后需要在烟草内验证功能吗

作者&投稿:邬周 (若有异议请与网页底部的电邮联系)
水稻基因克隆后需要在烟草内验证功能吗~

本文介绍了功能克隆,定位克隆,表型克隆等9种克隆植物基因的方法,着重分析了每项克隆方法的工作原理,应用范围和进展。
关键词 策略,功能克隆,定位克隆,表型克隆
STRATEGIES AND METHODS FOR CLONING PLANT GENES
SHU Qun-Fang LI Wen-Bin SUN Yong-Ru
(Institute of Genetics, The Chinese Academy of Sciences, Beijing 100101)
ZHAO Lu (The Capital Normal University, Beijing 100037)
Abstract  The strategies for cloning plant genes and the advance were reviewed here. These include functional cloning, positional cloning, phenotype cloning, mRNA differential display, and transposon tagging method.
Keywords Strategy, Functional cloning, Positional cloning, Transposon tagging, Phenotype cloning
基因的克隆就是利用体外重组技术,将特定的基因和其它DNA顺序插入到载体分子中。基因克隆的主要目标是识别、分离特异基因并获得基因的完整的 全序列,确定染色体定位,阐明基因的生化功能,明确其对特定性状的遗传控制关系。通过几十年的努力由于植物发育,生理生化,分子遗传等学科的迅速发展,使 人们掌握了大量有关植物优良性状基因的生物学和遗传学知识,再运用先进的酶学和生物学技术已经克隆出了与植物抗病、抗虫、抗除草剂、抗逆,育性、高蛋白质 及与植物发育有关的许多基因。我们实验室对天麻抗真菌蛋白基因作了功能克隆的研究(舒群芳等,1995;舒群芳等,1997),为了克隆植物基因也探讨了 其它克隆方法,本文论述基因克隆的策略、方法及取得的一些进展。
1 功能克隆(functional Cloning)
功能克 隆就是根据性状的基本生化特性这一功能信息,在鉴定和已知基因的功能后克隆(Collis,1995)。其具体作法是:在纯化相应的编码蛋白后构建 cDNA文库或基因组文库,DNA文库中基因的筛选根据情况主要可用二种办法进行,(1)将纯化的蛋白质进行氨基酸测序,据此合成寡核苷酸探针从cDNA 库或基因组文库中筛选编码基因,(2)将相应的编码蛋白制成相应抗体探针,从cDNA入载体表达库中筛选相应克隆。功能克隆是一种经典的基因克隆策略,很 多基因的分离利用这种策略。
Hain等从葡萄中克隆了两个编码白藜芦醇合成的二苯乙烯合成酶基因(Vst1和Vst2),葡萄中抗菌化合 物白藜芦醇的存在,可以提高对灰质葡萄孢(Botrytis cinerce)的抗性,在烟草和其它一些植物中无二苯乙烯合成酶,因此克隆该基因经过转基因后,对有些植物产生对灰质葡萄孢的抗性很有意义(Hain 等,1985)。Kondo等1989年对编码水稻巯基蛋白酶抑制剂的基因组DNA做了克隆和序列分析(Kondo等,1989)。周兆斓等构建了水稻 cDNA文库,分离了编码水稻巯基蛋白酶抑制剂的cDNA(周兆斓等,1996)。植物蛋白酶抑制剂是一类天然的抗虫物质,它可抑制摄食害虫对蛋白质的消 化,使害虫因缺乏所需氨基酸而导致非正常发育或死亡。胡天华等人从烟草中分离出流行于我国的黄瓜花叶病毒(Cucumber Mosaic virus)(CMV),并克隆了编码该病毒外壳蛋白的cDNA基因(胡天华等,1989)。王春香等从感病的烟草叶片中分离纯化了马铃薯x病毒 (potato virus X, pvx),克隆了完整的马铃薯x病毒外壳蛋白基因,并将外壳蛋白基因转入马铃薯中,以期获得抗pvx病毒的栽培种马铃薯(王春香等,1991)。病毒外壳 蛋白(Coat protein cp)基因的成功克隆,可使转基因植物中产生病毒外壳蛋白基因介导的抗性(Coat Protein Mediated Resistance CPMR)或病毒CP-RNA介导的抗性。Van kan 报道从真菌中成功的克隆出无毒基因Avr9,可直接利用此基因介导广谱高效的基因工程植物(Van Kan等,1991)。我们1995年构建了天麻cDNA文库,制备抗体探针成功地分离了编码天麻抗真菌蛋白基因的cDNA克隆,为抗真菌基因在农业、医 药等方面的应用打下了基础(舒群芳等,1995;舒群芳等,1997)。功能克隆的特点是用基因表达的产物蛋白质来克隆基因、虽然某一性状的编码基因是未 知的。如果对其生理生化及代谢途径研究的比较清楚,就可以分离和纯化控制该性状的蛋白质。因此功能克隆的关键是分离出一个纯度很高的蛋白质。只要有一个纯 的蛋白质,得到十分特异的探针,这一策略是行之有效的。采用功能克隆方法虽然已经克隆了很多基因,但由于绝大多数基因的产物目前还不知道。所以大多数基因 难以用这一经典的方法来克隆。随着分子生物学技术的发展,一条新的基因克隆策略逐渐形成,这就是定位克隆。
2 定位克隆(Positional cloning)
根据遗传连锁分析,染色体步移将基因定位到染色体的一个具体位置上后不断缩小筛选区域进而克隆该基因,研究该基因的功能或抗性的生化机制,这样一种策略 叫定位克隆(Monaco,1994)。连锁分析即通过基因与DNA标记之间的重组系数来估计这两者之间的距离,若某种性状的基因与DNA标记在子代不分 离,即有连锁在一起的趋势。根据这一原理可将与已知的某一DNA标记连锁的基因在染色体上定位。由于连锁分析需要依赖特定的基因作为连锁标记,即标记基因 与待研基因之间存在连锁关系,而满足与待研基因相连锁的基因实在太少,所以连锁分析对克隆大多数基因存在着一定的困难。RFLP的出现使多态性基因标记存 在于整个基因组内,解决了连锁分析中难以克服的困难。
1980年Wyman等科学家首次建立了限制酶切片段长度多态性RFLP (restriction fragment length polymorphism),使对任何一种表型相关的基因的定位成为可能。限制酶切片段长度多态性是用限制性内切酶切割后产生的DNA片段长度的多态性呈 孟德尔式遗传,是存在于全基因组的独特的多态标记,RFLP使基因定位变得易行(Wyman等,1980)。目前定位克隆一般是用RFLP等分子标记制作 遗传图谱,寻找与待测基因连锁的RFLP标记,获得基因在染色体上的定位然后克隆基因。所以RFLP和后来发展起来的RAPD技术的建立,可将待测基因相 对准确地定位,利用已知的基因可分离与之连锁的未知基因。其基本程序是构建一个基因组文库、用已知的A基因为探针,从基因组文库中筛选出与其有同源序列的 a克隆,再用a克隆为探针从基因组文库中筛选出与a克隆有同源序列的b克隆,然后以此类推最后筛选出未知基因并把它分离出来。目前已在番茄、烟草、大麦、 水稻、大豆、玉米等植物中发现了与抗病基因紧密连锁的RFLP标记并构建了遗传图谱(Figdore等,1988;Heun等,1991;Smith, 1991;Diers等,1992)。用这种方法已分别克隆到拟南芥菜、番茄、水稻等植物中的有关抗病基因(Martin等,1993;Bent等, 1994;Mindrinos等,1994;Wenyuan等,1995) 。Martin等1993年最早用定位克隆技术克隆出番茄pto基因,pto基因负责对带有无毒基因Avrpto的细菌,丁香假单胞菌 (pseudomonas syringae pv)菌株的抗性,Pto基因导入感病番茄后转基因植株增强了对病原菌的抗性(Martin等,1993)。Wenyuan等1995年用这一技术克隆了 水稻Xa21基因,Xa21基因对真菌Xanthomonas oryzae pv oryzae (Xoo)具有抗性(Wenyuan等,1995)。
3 转座子标记法(transposon tagging)
转座子是可从 一个基因位置转移到另一位置的DNA片段。在转座过程中原来位置的DNA片段(转座子)并未消失,发生转移的只是转座子的拷贝、基因发生转座可引起插入突 变使插入位置的基因失活并诱导产生突变型或在插入位置上出现新的编码基因。通过转座子上的标记基因(如抗药性等)就可检测出突变基因的位置和克隆出突变基 因来。转座子标记法是把转座子作为基因定位的标记和通过转座子在染色体上的插入和嵌合来克隆基因(Fedoroff等,1984;Jones等, 1994)。
利用转座子克隆植物基因的操作步骤主要应是以下几方面:(1) 把已分离得到的转座子与选择标记构建成含转座子的质粒载体。(2) 把转座子导入目标植物。(3) 利用Southern杂交等技术检测转座子是否从载体质粒中转座到目标植物基因组中,这是转座子定位和分离目标基因所不可缺少的。(4) 转座子插入突变的鉴定及其分离(Ellis等,1992)。通常用于克隆植物基因的转座子有玉米的Ac. Mu, Smp和Ds等。Ac含有编码转座酶的基因,能够自主的转座,Ds不含转座酶所以不能自主的转座,但Ds-Ac系统因Ac为Ds提供了转座酶就可以自主的 转座了。用转座子标记法进行植物基因的分离,首要的是把Ac等转座子转化到要进行基因克隆的植物中,目前多数是利用土壤农杆菌介导的转化系统把转座子导入 目标植物中(Keller等,1993;Bancroft等,1993)。目前已在玉米、烟草、番茄、亚麻等植物中克隆出抗性基因(Johal和 Briggs,1992;Whitham等,1994;Jones等,1994;Gregory等,1995)。Johal和Brigge分离出抗灰色长 蠕孢(Helminth osporium carbonum)1号小种玉米的HMI特异真菌抗性基因。该基因存在于玉米的抗性品种中,能够分解长蠕孢1号小种产生的对玉米具特异致病性的HC毒素, 该基因编码HC毒素脱毒酶可使植物具有抗病性(Johal和Briggs,1992)。和转座子标记法的原理相似的还有T-DNA标记法,两者都是由于一 段基因的插入导致染色体结构发生变化产生突变体,而T-DNA标记法产生的突变是由于T-DNA插入导致的。Kenneth等利用T-DNA插入标记培育 出拟南芥矮化突变体(Kenneth等,1989)。
4 人工合成并克隆基因
蜘蛛毒素是一种小肽,它只有37个氨基酸,体外实 验表明它能杀死多种对农作物有害的昆虫,蒋红等1995年根据蜘蛛毒素的氨基酸序列,采用植物偏爱密码子、人工合成并克隆了此肽的基因(蒋红等, 1995)。Adang 1995年人工合成了苏云金杆菌毒蛋白(Bacillus thuringiensis insecticidal crystal protein)基因(Adang等,1995)。
5 表型克隆(phenotype cloning)
1995年Jonsson和Weissman提出表型克隆概念(Jonsson和Weissman,1995),有些植物目前即不了解它的基因产物,也没 有对它们进行基因定位,但已知植物在表型上存在差异,利用表型差异或组织器官特异表达产生的差异来克隆植物基因就是表型克隆。San等用表型差异从拟南芥 中克隆出赤霉素合成酶基因(Sun等,1992)。表型克隆在策略上试图将表型与基因结构或基因表达的特征联系起来,从而分离特定表型相关基因,力求不必 事先知道基因的生化功能或图谱定位,根据基因的表达效应就直接分离该基因(Brown,1994)。
6 mRNA差异显示(mRNA differential display)
1993年Liang和Averboukh 等科学家提出了mRNA差异显示(mRNA DD, mRNA differential display)的方案(Liang等,1993)。这一方案的依据是在高等真核生物中所有的生命过程和病理变化,不论是由单基因控制的还是由多基因控制 的,最终都是通过基因表达的质或量的差异而体现出来。研究基因表达差异,研究两基因组差异表达基因的分离,为克隆复杂性状相关基因开辟了重要的途径。该方 案可以检测、分离出全长任何部分有突变的mRNA,其基本程序是:(1)提取两种细胞的mRNA,反转录后成为2种cDNA。(2) 以一定的引物作随机聚合酶链反应。(3) 通过扩增产物的电泳分析,分离出不同样品间的差异条带。(4)将差异DNA做成探针。(5) 在cDNA文库或基因组文库中筛选基因并作功能分析(Baeur等,1993)。Liang和Pardee又建立了mRNA差别显示PCR方法 (Liang和Pardee,1992),该方法可以同时分析几个样品间基因的表达,检测灵敏度高,PCR扩增后,一些表达量很低的mRNA也能被检测出 来,应用PCR及DNA测序,两种技术简单易行,目前已被成功地用来分离小麦热激蛋白基因(Joshi等,1996)和水稻蔗糖调节基因(Tseng等, 1995)等。
7 减法杂交(Subtractive hybridization)
Lee等1991年提出减法杂交技术 (Lee等,1991),植物在生长发育过程中不同组织或同一组织的不同发育阶段,由于基因特异性的表达,其mRNA表现不同,这样从表达特异基因的组织 中提取 mRNA,反转录为cDNA,从无特异基因表达的组织中提取mRNA,两者杂交,在表达特异基因的组织和无特异基因表达的组织中均表达的基因产物形成杂交 分子,而特异mRNA转录的cDNA仍保持单链状态,把这种单链cDNA分离出来即为差异表达的基因,Chong等用此技术克隆了小麦春化相关基因 (Chong等,1994)。
8 PCR扩增克隆
这是一种参考已知基因的序列克隆基因的方法。目前已经知道了很多植物基因的序 列,当克隆类似基因时可先从Gene bank库中找到有关基因序列,用PCR方法克隆不同植物的基因。基本方法是根据已知基因的序列设计并合成一对引物,从植物中提取DNA进行PCR扩增, 扩增的片段纯化后连接到合适的载体上,用酶切分析和序列分析检测重组子,并与已知基因序列进行比较,如目前已在玉米、水稻、向日葵、巴西豆等植物中分离出 富含甲硫氨酸的蛋白及其编码基因,根据Masumura等(1989)发表的10KD水稻醇溶蛋白基因序列合成一对引物,王广立等克隆了水稻10KD醇溶 蛋白基因(王广立等,1994)。
9 依据序列同源性克隆基因
生物的种、属之间编码基因序列的同源性高于非编码区的序列。此方 法的基本作法是在其它种属的同源基因被克隆的前提下,构建cDNA文库或基因组文库,然后以已知的基因序列为探针来筛选目的克隆。马德钦等根据文献报道的 甜菜碱醛脱氢酶(BADH)基因的序列作了菠菜甜菜碱醛脱氢酶基因的克隆和序列分析(马德钦等,1996)。
综上所述,可见发现和克隆基 因的过程是艰巨和富有收获的,几十年来各国科学家在基因克隆这一最激动人心的生物高技术领域内走过了艰难而又曲折的历程,从而创造和发展了上述种种植物基 因克隆的方法,使人类在认识自然、掌握自然的道路上又前进了一步。前辈所创造的成就和技术无疑为我们成功地克隆植物基因提供了快捷和高效的途径。利用已知 序列克隆基因,用同种或同属的已知的同源序列筛选基因都比较容易,适合于克隆那些研究较晚的许多重要农作物的基因。获得极纯的蛋白质是功能克隆的关键,随 着蛋白质纯化技术的提高,功能克隆将发挥它的潜在作用。随着植物遗传图谱上基因定位基础研究工作的提高,定位克隆将发挥其巨大的作用。
作者单位:舒群芳 李文彬 孙勇如(中国科学院遗传研究所 北京 100101)
赵路(首都师范大学化学系 北京 100037)
参考文献
马德钦等,1996. 生物工程学报,12(1):65~70
王广立等,1994. 植物学报, 36(5):351~357
王春香等,1991. 植物学报, 33(5):363~369
周兆斓等,1996. 中国科学(C辑), 26:2, 149~155
胡天华等,1989. 科学通报,21:1652~1655
蒋红等,1995. 植物学报. 37:321~325
舒群芳等,1997.农业生物技术学报,5(1): 54~57
舒群芳等,1995.植物学报,37(9):685~690
Adang M J et al, 1995. Synthetic gene for B thuringiensis insecticidal protein-designed against insect pests. AolNo63/00. petent, No. EP682115
Baeur D et al, 1993. Nucl Acids Res, 21(14):4272~4280
Bancroft I et al,1993. Plant cell, 5:631~638
Bent A F et al, 1994. Science, 265:1860~1866
Brown P O, 1994. Current Opin Genet Dev, 4:366~373
Chong K et al, 1994. Physiol plant, 92:511~514
Collis F S,1995. Nature Genet, 9:347~350
Diers B W et al, 1992. Crop Sci, 32:377~383
Ellis J G et al, 1992. Theor Appl Genet, 85:46~54
Fedoroff N V et al, 1984. Proc Natl Acad Sci USA, 81:3825~3829
Figdore S S et al, 1988. Theor Appl Genet, 75:833~840
Gregory J et al, 1995. Plant cell, 7: 1195~1206,
Hain R et al, 1985. Mol Gene Genet ,199:161~168
Heun M et al, 1991. Genome, 34:437~447
Johal G S, Briggs SP. 1992. Science,258:985~987
Jones D A et al, 1994. Science, 266:789~793
Jonsson J J, Weissman S M 1995. From mutation mapping to phenotype cloning. PNAS. 92, 83~85
Joshi C P et al, 1996. Plant Mol Biol, 30:641~646
Keller J et al, 1993. Plant Mol Biol, 21:157~170
Kenneth A F et al, 1989. Science, 243: 1351~1354
Kondo H et al, 1989. Gene, 81:259~265
Lee S W et al, 1991. Proc Natl Acad Sci USA, 88: 2825~2829
Liang P et al, 1993. Nucl Acids Res, 21(14):3269~3275
Liang P, Pardee A B, 1992. Science, 257: 967~971
Martin G B et al, 1993. Science, 262:1432~1436
Masumura T et al, 1989. Plant Mol Biol, 12: 123~130
Mindrinos M et al, 1994. Cell, 78:1089~1099
Monaco A P, 1994. Current opin Genet Dev, 4:360~365
Smith J S C, smith O S, 1991. Crop Sci, 31:893~899
Sun T P et al, 1992. The plant cell, 4:119~128
Tseng T C et al, 1995. Gene, 161:179~182
Van Kan J A L, 1991. Mol Plant-Microb Inter,4:52~59
Wenyuan Song et al, 1995. Science, 270:1804~1806
Whitham S et al, 1994. Cell, 78:1101~1115

  基因克隆后需要在烟草内验证功能
  基因的克隆就是利用体外重组技术,将特定的基因和其它DNA顺序插入到载体分子中。基因克隆的主要目标是识别、分离特异基因并获得基因的完整的 全序列,确定染色体定位,阐明基因的生化功能,明确其对特定性状的遗传控制关系。通过几十年的努力由于植物发育,生理生化,分子遗传等学科的迅速发展,使 人们掌握了大量有关植物优良性状基因的生物学和遗传学知识,再运用先进的酶学和生物学技术已经克隆出了与植物抗病、抗虫、抗除草剂、抗逆,育性、高蛋白质 及与植物发育有关的许多基因。我们实验室对天麻抗真菌蛋白基因作了功能克隆的研究(舒群芳等,1995;舒群芳等,1997),为了克隆植物基因也探讨了 其它克隆方法,本文论述基因克隆的策略、方法及取得的一些进展。
  1 功能克隆(functional Cloning)
  功能克 隆就是根据性状的基本生化特性这一功能信息,在鉴定和已知基因的功能后克隆(Collis,1995)。其具体作法是:在纯化相应的编码蛋白后构建 cDNA文库或基因组文库,DNA文库中基因的筛选根据情况主要可用二种办法进行,(1)将纯化的蛋白质进行氨基酸测序,据此合成寡核苷酸探针从cDNA 库或基因组文库中筛选编码基因,(2)将相应的编码蛋白制成相应抗体探针,从cDNA入载体表达库中筛选相应克隆。功能克隆是一种经典的基因克隆策略,很 多基因的分离利用这种策略。
  Hain等从葡萄中克隆了两个编码白藜芦醇合成的二苯乙烯合成酶基因(Vst1和Vst2),葡萄中抗菌化合 物白藜芦醇的存在,可以提高对灰质葡萄孢(Botrytis cinerce)的抗性,在烟草和其它一些植物中无二苯乙烯合成酶,因此克隆该基因经过转基因后,对有些植物产生对灰质葡萄孢的抗性很有意义(Hain 等,1985)。Kondo等1989年对编码水稻巯基蛋白酶抑制剂的基因组DNA做了克隆和序列分析(Kondo等,1989)。周兆斓等构建了水稻 cDNA文库,分离了编码水稻巯基蛋白酶抑制剂的cDNA(周兆斓等,1996)。植物蛋白酶抑制剂是一类天然的抗虫物质,它可抑制摄食害虫对蛋白质的消 化,使害虫因缺乏所需氨基酸而导致非正常发育或死亡。胡天华等人从烟草中分离出流行于我国的黄瓜花叶病毒(Cucumber Mosaic virus)(CMV),并克隆了编码该病毒外壳蛋白的cDNA基因(胡天华等,1989)。王春香等从感病的烟草叶片中分离纯化了马铃薯x病毒 (potato virus X, pvx),克隆了完整的马铃薯x病毒外壳蛋白基因,并将外壳蛋白基因转入马铃薯中,以期获得抗pvx病毒的栽培种马铃薯(王春香等,1991)。病毒外壳 蛋白(Coat protein cp)基因的成功克隆,可使转基因植物中产生病毒外壳蛋白基因介导的抗性(Coat Protein Mediated Resistance CPMR)或病毒CP-RNA介导的抗性。Van kan 报道从真菌中成功的克隆出无毒基因Avr9,可直接利用此基因介导广谱高效的基因工程植物(Van Kan等,1991)。我们1995年构建了天麻cDNA文库,制备抗体探针成功地分离了编码天麻抗真菌蛋白基因的cDNA克隆,为抗真菌基因在农业、医 药等方面的应用打下了基础(舒群芳等,1995;舒群芳等,1997)。功能克隆的特点是用基因表达的产物蛋白质来克隆基因、虽然某一性状的编码基因是未 知的。如果对其生理生化及代谢途径研究的比较清楚,就可以分离和纯化控制该性状的蛋白质。因此功能克隆的关键是分离出一个纯度很高的蛋白质。只要有一个纯 的蛋白质,得到十分特异的探针,这一策略是行之有效的。采用功能克隆方法虽然已经克隆了很多基因,但由于绝大多数基因的产物目前还不知道。所以大多数基因 难以用这一经典的方法来克隆。随着分子生物学技术的发展,一条新的基因克隆策略逐渐形成,这就是定位克隆。
  2 定位克隆(Positional cloning)
  根据遗传连锁分析,染色体步移将基因定位到染色体的一个具体位置上后不断缩小筛选区域进而克隆该基因,研究该基因的功能或抗性的生化机制,这样一种策略 叫定位克隆(Monaco,1994)。连锁分析即通过基因与DNA标记之间的重组系数来估计这两者之间的距离,若某种性状的基因与DNA标记在子代不分 离,即有连锁在一起的趋势。根据这一原理可将与已知的某一DNA标记连锁的基因在染色体上定位。由于连锁分析需要依赖特定的基因作为连锁标记,即标记基因 与待研基因之间存在连锁关系,而满足与待研基因相连锁的基因实在太少,所以连锁分析对克隆大多数基因存在着一定的困难。RFLP的出现使多态性基因标记存 在于整个基因组内,解决了连锁分析中难以克服的困难。
  1980年Wyman等科学家首次建立了限制酶切片段长度多态性RFLP (restriction fragment length polymorphism),使对任何一种表型相关的基因的定位成为可能。限制酶切片段长度多态性是用限制性内切酶切割后产生的DNA片段长度的多态性呈 孟德尔式遗传,是存在于全基因组的独特的多态标记,RFLP使基因定位变得易行(Wyman等,1980)。目前定位克隆一般是用RFLP等分子标记制作 遗传图谱,寻找与待测基因连锁的RFLP标记,获得基因在染色体上的定位然后克隆基因。所以RFLP和后来发展起来的RAPD技术的建立,可将待测基因相 对准确地定位,利用已知的基因可分离与之连锁的未知基因。其基本程序是构建一个基因组文库、用已知的A基因为探针,从基因组文库中筛选出与其有同源序列的 a克隆,再用a克隆为探针从基因组文库中筛选出与a克隆有同源序列的b克隆,然后以此类推最后筛选出未知基因并把它分离出来。目前已在番茄、烟草、大麦、 水稻、大豆、玉米等植物中发现了与抗病基因紧密连锁的RFLP标记并构建了遗传图谱(Figdore等,1988;Heun等,1991;Smith, 1991;Diers等,1992)。用这种方法已分别克隆到拟南芥菜、番茄、水稻等植物中的有关抗病基因(Martin等,1993;Bent等, 1994;Mindrinos等,1994;Wenyuan等,1995) 。Martin等1993年最早用定位克隆技术克隆出番茄pto基因,pto基因负责对带有无毒基因Avrpto的细菌,丁香假单胞菌 (pseudomonas syringae pv)菌株的抗性,Pto基因导入感病番茄后转基因植株增强了对病原菌的抗性(Martin等,1993)。Wenyuan等1995年用这一技术克隆了 水稻Xa21基因,Xa21基因对真菌Xanthomonas oryzae pv oryzae (Xoo)具有抗性(Wenyuan等,1995)。
  3 转座子标记法(transposon tagging)
  转座子是可从 一个基因位置转移到另一位置的DNA片段。在转座过程中原来位置的DNA片段(转座子)并未消失,发生转移的只是转座子的拷贝、基因发生转座可引起插入突 变使插入位置的基因失活并诱导产生突变型或在插入位置上出现新的编码基因。通过转座子上的标记基因(如抗药性等)就可检测出突变基因的位置和克隆出突变基 因来。转座子标记法是把转座子作为基因定位的标记和通过转座子在染色体上的插入和嵌合来克隆基因(Fedoroff等,1984;Jones等, 1994)。
  利用转座子克隆植物基因的操作步骤主要应是以下几方面:(1) 把已分离得到的转座子与选择标记构建成含转座子的质粒载体。(2) 把转座子导入目标植物。(3) 利用Southern杂交等技术检测转座子是否从载体质粒中转座到目标植物基因组中,这是转座子定位和分离目标基因所不可缺少的。(4) 转座子插入突变的鉴定及其分离(Ellis等,1992)。通常用于克隆植物基因的转座子有玉米的Ac. Mu, Smp和Ds等。Ac含有编码转座酶的基因,能够自主的转座,Ds不含转座酶所以不能自主的转座,但Ds-Ac系统因Ac为Ds提供了转座酶就可以自主的 转座了。用转座子标记法进行植物基因的分离,首要的是把Ac等转座子转化到要进行基因克隆的植物中,目前多数是利用土壤农杆菌介导的转化系统把转座子导入 目标植物中(Keller等,1993;Bancroft等,1993)。目前已在玉米、烟草、番茄、亚麻等植物中克隆出抗性基因(Johal和 Briggs,1992;Whitham等,1994;Jones等,1994;Gregory等,1995)。Johal和Brigge分离出抗灰色长 蠕孢(Helminth osporium carbonum)1号小种玉米的HMI特异真菌抗性基因。该基因存在于玉米的抗性品种中,能够分解长蠕孢1号小种产生的对玉米具特异致病性的HC毒素, 该基因编码HC毒素脱毒酶可使植物具有抗病性(Johal和Briggs,1992)。和转座子标记法的原理相似的还有T-DNA标记法,两者都是由于一 段基因的插入导致染色体结构发生变化产生突变体,而T-DNA标记法产生的突变是由于T-DNA插入导致的。Kenneth等利用T-DNA插入标记培育 出拟南芥矮化突变体(Kenneth等,1989)。
  4 人工合成并克隆基因
  蜘蛛毒素是一种小肽,它只有37个氨基酸,体外实 验表明它能杀死多种对农作物有害的昆虫,蒋红等1995年根据蜘蛛毒素的氨基酸序列,采用植物偏爱密码子、人工合成并克隆了此肽的基因(蒋红等, 1995)。Adang 1995年人工合成了苏云金杆菌毒蛋白(Bacillus thuringiensis insecticidal crystal protein)基因(Adang等,1995)。
  5 表型克隆(phenotype cloning)
  1995年Jonsson和Weissman提出表型克隆概念(Jonsson和Weissman,1995),有些植物目前即不了解它的基因产物,也没 有对它们进行基因定位,但已知植物在表型上存在差异,利用表型差异或组织器官特异表达产生的差异来克隆植物基因就是表型克隆。San等用表型差异从拟南芥 中克隆出赤霉素合成酶基因(Sun等,1992)。表型克隆在策略上试图将表型与基因结构或基因表达的特征联系起来,从而分离特定表型相关基因,力求不必 事先知道基因的生化功能或图谱定位,根据基因的表达效应就直接分离该基因(Brown,1994)。
  6 mRNA差异显示(mRNA differential display)
  1993年Liang和Averboukh 等科学家提出了mRNA差异显示(mRNA DD, mRNA differential display)的方案(Liang等,1993)。这一方案的依据是在高等真核生物中所有的生命过程和病理变化,不论是由单基因控制的还是由多基因控制 的,最终都是通过基因表达的质或量的差异而体现出来。研究基因表达差异,研究两基因组差异表达基因的分离,为克隆复杂性状相关基因开辟了重要的途径。该方 案可以检测、分离出全长任何部分有突变的mRNA,其基本程序是:(1)提取两种细胞的mRNA,反转录后成为2种cDNA。(2) 以一定的引物作随机聚合酶链反应。(3) 通过扩增产物的电泳分析,分离出不同样品间的差异条带。(4)将差异DNA做成探针。(5) 在cDNA文库或基因组文库中筛选基因并作功能分析(Baeur等,1993)。Liang和Pardee又建立了mRNA差别显示PCR方法 (Liang和Pardee,1992),该方法可以同时分析几个样品间基因的表达,检测灵敏度高,PCR扩增后,一些表达量很低的mRNA也能被检测出 来,应用PCR及DNA测序,两种技术简单易行,目前已被成功地用来分离小麦热激蛋白基因(Joshi等,1996)和水稻蔗糖调节基因(Tseng等, 1995)等。
  7 减法杂交(Subtractive hybridization)
  Lee等1991年提出减法杂交技术 (Lee等,1991),植物在生长发育过程中不同组织或同一组织的不同发育阶段,由于基因特异性的表达,其mRNA表现不同,这样从表达特异基因的组织 中提取 mRNA,反转录为cDNA,从无特异基因表达的组织中提取mRNA,两者杂交,在表达特异基因的组织和无特异基因表达的组织中均表达的基因产物形成杂交 分子,而特异mRNA转录的cDNA仍保持单链状态,把这种单链cDNA分离出来即为差异表达的基因,Chong等用此技术克隆了小麦春化相关基因 (Chong等,1994)。
  8 PCR扩增克隆
  这是一种参考已知基因的序列克隆基因的方法。目前已经知道了很多植物基因的序 列,当克隆类似基因时可先从Gene bank库中找到有关基因序列,用PCR方法克隆不同植物的基因。基本方法是根据已知基因的序列设计并合成一对引物,从植物中提取DNA进行PCR扩增, 扩增的片段纯化后连接到合适的载体上,用酶切分析和序列分析检测重组子,并与已知基因序列进行比较,如目前已在玉米、水稻、向日葵、巴西豆等植物中分离出 富含甲硫氨酸的蛋白及其编码基因,根据Masumura等(1989)发表的10KD水稻醇溶蛋白基因序列合成一对引物,王广立等克隆了水稻10KD醇溶 蛋白基因(王广立等,1994)。
  9 依据序列同源性克隆基因
  生物的种、属之间编码基因序列的同源性高于非编码区的序列。此方 法的基本作法是在其它种属的同源基因被克隆的前提下,构建cDNA文库或基因组文库,然后以已知的基因序列为探针来筛选目的克隆。马德钦等根据文献报道的 甜菜碱醛脱氢酶(BADH)基因的序列作了菠菜甜菜碱醛脱氢酶基因的克隆和序列分析(马德钦等,1996)。
  综上所述,可见发现和克隆基 因的过程是艰巨和富有收获的,几十年来各国科学家在基因克隆这一最激动人心的生物高技术领域内走过了艰难而又曲折的历程,从而创造和发展了上述种种植物基 因克隆的方法,使人类在认识自然、掌握自然的道路上又前进了一步。前辈所创造的成就和技术无疑为我们成功地克隆植物基因提供了快捷和高效的途径。利用已知 序列克隆基因,用同种或同属的已知的同源序列筛选基因都比较容易,适合于克隆那些研究较晚的许多重要农作物的基因。获得极纯的蛋白质是功能克隆的关键,随 着蛋白质纯化技术的提高,功能克隆将发挥它的潜在作用。随着植物遗传图谱上基因定位基础研究工作的提高,定位克隆将发挥其巨大的作用。

  基因克隆后需要在烟草内验证功能
  基因的克隆就是利用体外重组技术,将特定的基因和其它DNA顺序插入到载体分子中。基因克隆的主要目标是识别、分离特异基因并获得基因的完整的 全序列,确定染色体定位,阐明基因的生化功能,明确其对特定性状的遗传控制关系。通过几十年的努力由于植物发育,生理生化,分子遗传等学科的迅速发展,使 人们掌握了大量有关植物优良性状基因的生物学和遗传学知识,再运用先进的酶学和生物学技术已经克隆出了与植物抗病、抗虫、抗除草剂、抗逆,育性、高蛋白质 及与植物发育有关的许多基因。我们实验室对天麻抗真菌蛋白基因作了功能克隆的研究(舒群芳等,1995;舒群芳等,1997),为了克隆植物基因也探讨了 其它克隆方法,本文论述基因克隆的策略、方法及取得的一些进展。
  1 功能克隆(functional Cloning)
  功能克 隆就是根据性状的基本生化特性这一功能信息,在鉴定和已知基因的功能后克隆(Collis,1995)。其具体作法是:在纯化相应的编码蛋白后构建 cDNA文库或基因组文库,DNA文库中基因的筛选根据情况主要可用二种办法进行,(1)将纯化的蛋白质进行氨基酸测序,据此合成寡核苷酸探针从cDNA 库或基因组文库中筛选编码基因,(2)将相应的编码蛋白制成相应抗体探针,从cDNA入载体表达库中筛选相应克隆。功能克隆是一种经典的基因克隆策略,很 多基因的分离利用这种策略。
  Hain等从葡萄中克隆了两个编码白藜芦醇合成的二苯乙烯合成酶基因(Vst1和Vst2),葡萄中抗菌化合 物白藜芦醇的存在,可以提高对灰质葡萄孢(Botrytis cinerce)的抗性,在烟草和其它一些植物中无二苯乙烯合成酶,因此克隆该基因经过转基因后,对有些植物产生对灰质葡萄孢的抗性很有意义(Hain 等,1985)。Kondo等1989年对编码水稻巯基蛋白酶抑制剂的基因组DNA做了克隆和序列分析(Kondo等,1989)。周兆斓等构建了水稻 cDNA文库,分离了编码水稻巯基蛋白酶抑制剂的cDNA(周兆斓等,1996)。植物蛋白酶抑制剂是一类天然的抗虫物质,它可抑制摄食害虫对蛋白质的消 化,使害虫因缺乏所需氨基酸而导致非正常发育或死亡。胡天华等人从烟草中分离出流行于我国的黄瓜花叶病毒(Cucumber Mosaic virus)(CMV),并克隆了编码该病毒外壳蛋白的cDNA基因(胡天华等,1989)。王春香等从感病的烟草叶片中分离纯化了马铃薯x病毒 (potato virus X, pvx),克隆了完整的马铃薯x病毒外壳蛋白基因,并将外壳蛋白基因转入马铃薯中,以期获得抗pvx病毒的栽培种马铃薯(王春香等,1991)。病毒外壳 蛋白(Coat protein cp)基因的成功克隆,可使转基因植物中产生病毒外壳蛋白基因介导的抗性(Coat Protein Mediated Resistance CPMR)或病毒CP-RNA介导的抗性。Van kan 报道从真菌中成功的克隆出无毒基因Avr9,可直接利用此基因介导广谱高效的基因工程植物(Van Kan等,1991)。我们1995年构建了天麻cDNA文库,制备抗体探针成功地分离了编码天麻抗真菌蛋白基因的cDNA克隆,为抗真菌基因在农业、医 药等方面的应用打下了基础(舒群芳等,1995;舒群芳等,1997)。功能克隆的特点是用基因表达的产物蛋白质来克隆基因、虽然某一性状的编码基因是未 知的。如果对其生理生化及代谢途径研究的比较清楚,就可以分离和纯化控制该性状的蛋白质。因此功能克隆的关键是分离出一个纯度很高的蛋白质。只要有一个纯 的蛋白质,得到十分特异的探针,这一策略是行之有效的。采用功能克隆方法虽然已经克隆了很多基因,但由于绝大多数基因的产物目前还不知道。所以大多数基因 难以用这一经典的方法来克隆。随着分子生物学技术的发展,一条新的基因克隆策略逐渐形成,这就是定位克隆。
  2 定位克隆(Positional cloning)
  根据遗传连锁分析,染色体步移将基因定位到染色体的一个具体位置上后不断缩小筛选区域进而克隆该基因,研究该基因的功能或抗性的生化机制,这样一种策略 叫定位克隆(Monaco,1994)。连锁分析即通过基因与DNA标记之间的重组系数来估计这两者之间的距离,若某种性状的基因与DNA标记在子代不分 离,即有连锁在一起的趋势。根据这一原理可将与已知的某一DNA标记连锁的基因在染色体上定位。由于连锁分析需要依赖特定的基因作为连锁标记,即标记基因 与待研基因之间存在连锁关系,而满足与待研基因相连锁的基因实在太少,所以连锁分析对克隆大多数基因存在着一定的困难。RFLP的出现使多态性基因标记存 在于整个基因组内,解决了连锁分析中难以克服的困难。
  1980年Wyman等科学家首次建立了限制酶切片段长度多态性RFLP (restriction fragment length polymorphism),使对任何一种表型相关的基因的定位成为可能。限制酶切片段长度多态性是用限制性内切酶切割后产生的DNA片段长度的多态性呈 孟德尔式遗传,是存在于全基因组的独特的多态标记,RFLP使基因定位变得易行(Wyman等,1980)。目前定位克隆一般是用RFLP等分子标记制作 遗传图谱,寻找与待测基因连锁的RFLP标记,获得基因在染色体上的定位然后克隆基因。所以RFLP和后来发展起来的RAPD技术的建立,可将待测基因相 对准确地定位,利用已知的基因可分离与之连锁的未知基因。其基本程序是构建一个基因组文库、用已知的A基因为探针,从基因组文库中筛选出与其有同源序列的 a克隆,再用a克隆为探针从基因组文库中筛选出与a克隆有同源序列的b克隆,然后以此类推最后筛选出未知基因并把它分离出来。目前已在番茄、烟草、大麦、 水稻、大豆、玉米等植物中发现了与抗病基因紧密连锁的RFLP标记并构建了遗传图谱(Figdore等,1988;Heun等,1991;Smith, 1991;Diers等,1992)。用这种方法已分别克隆到拟南芥菜、番茄、水稻等植物中的有关抗病基因(Martin等,1993;Bent等, 1994;Mindrinos等,1994;Wenyuan等,1995) 。Martin等1993年最早用定位克隆技术克隆出番茄pto基因,pto基因负责对带有无毒基因Avrpto的细菌,丁香假单胞菌 (pseudomonas syringae pv)菌株的抗性,Pto基因导入感病番茄后转基因植株增强了对病原菌的抗性(Martin等,1993)。Wenyuan等1995年用这一技术克隆了 水稻Xa21基因,Xa21基因对真菌Xanthomonas oryzae pv oryzae (Xoo)具有抗性(Wenyuan等,1995)。
  3 转座子标记法(transposon tagging)
  转座子是可从 一个基因位置转移到另一位置的DNA片段。在转座过程中原来位置的DNA片段(转座子)并未消失,发生转移的只是转座子的拷贝、基因发生转座可引起插入突 变使插入位置的基因失活并诱导产生突变型或在插入位置上出现新的编码基因。通过转座子上的标记基因(如抗药性等)就可检测出突变基因的位置和克隆出突变基 因来。转座子标记法是把转座子作为基因定位的标记和通过转座子在染色体上的插入和嵌合来克隆基因(Fedoroff等,1984;Jones等, 1994)。
  利用转座子克隆植物基因的操作步骤主要应是以下几方面:(1) 把已分离得到的转座子与选择标记构建成含转座子的质粒载体。(2) 把转座子导入目标植物。(3) 利用Southern杂交等技术检测转座子是否从载体质粒中转座到目标植物基因组中,这是转座子定位和分离目标基因所不可缺少的。(4) 转座子插入突变的鉴定及其分离(Ellis等,1992)。通常用于克隆植物基因的转座子有玉米的Ac. Mu, Smp和Ds等。Ac含有编码转座酶的基因,能够自主的转座,Ds不含转座酶所以不能自主的转座,但Ds-Ac系统因Ac为Ds提供了转座酶就可以自主的 转座了。用转座子标记法进行植物基因的分离,首要的是把Ac等转座子转化到要进行基因克隆的植物中,目前多数是利用土壤农杆菌介导的转化系统把转座子导入 目标植物中(Keller等,1993;Bancroft等,1993)。目前已在玉米、烟草、番茄、亚麻等植物中克隆出抗性基因(Johal和 Briggs,1992;Whitham等,1994;Jones等,1994;Gregory等,1995)。Johal和Brigge分离出抗灰色长 蠕孢(Helminth osporium carbonum)1号小种玉米的HMI特异真菌抗性基因。该基因存在于玉米的抗性品种中,能够分解长蠕孢1号小种产生的对玉米具特异致病性的HC毒素, 该基因编码HC毒素脱毒酶可使植物具有抗病性(Johal和Briggs,1992)。和转座子标记法的原理相似的还有T-DNA标记法,两者都是由于一 段基因的插入导致染色体结构发生变化产生突变体,而T-DNA标记法产生的突变是由于T-DNA插入导致的。Kenneth等利用T-DNA插入标记培育 出拟南芥矮化突变体(Kenneth等,1989)。
  4 人工合成并克隆基因
  蜘蛛毒素是一种小肽,它只有37个氨基酸,体外实 验表明它能杀死多种对农作物有害的昆虫,蒋红等1995年根据蜘蛛毒素的氨基酸序列,采用植物偏爱密码子、人工合成并克隆了此肽的基因(蒋红等, 1995)。Adang 1995年人工合成了苏云金杆菌毒蛋白(Bacillus thuringiensis insecticidal crystal protein)基因(Adang等,1995)。
  5 表型克隆(phenotype cloning)
  1995年Jonsson和Weissman提出表型克隆概念(Jonsson和Weissman,1995),有些植物目前即不了解它的基因产物,也没 有对它们进行基因定位,但已知植物在表型上存在差异,利用表型差异或组织器官特异表达产生的差异来克隆植物基因就是表型克隆。San等用表型差异从拟南芥 中克隆出赤霉素合成酶基因(Sun等,1992)。表型克隆在策略上试图将表型与基因结构或基因表达的特征联系起来,从而分离特定表型相关基因,力求不必 事先知道基因的生化功能或图谱定位,根据基因的表达效应就直接分离该基因(Brown,1994)。
  6 mRNA差异显示(mRNA differential display)
  1993年Liang和Averboukh 等科学家提出了mRNA差异显示(mRNA DD, mRNA differential display)的方案(Liang等,1993)。这一方案的依据是在高等真核生物中所有的生命过程和病理变化,不论是由单基因控制的还是由多基因控制 的,最终都是通过基因表达的质或量的差异而体现出来。研究基因表达差异,研究两基因组差异表达基因的分离,为克隆复杂性状相关基因开辟了重要的途径。该方 案可以检测、分离出全长任何部分有突变的mRNA,其基本程序是:(1)提取两种细胞的mRNA,反转录后成为2种cDNA。(2) 以一定的引物作随机聚合酶链反应。(3) 通过扩增产物的电泳分析,分离出不同样品间的差异条带。(4)将差异DNA做成探针。(5) 在cDNA文库或基因组文库中筛选基因并作功能分析(Baeur等,1993)。Liang和Pardee又建立了mRNA差别显示PCR方法 (Liang和Pardee,1992),该方法可以同时分析几个样品间基因的表达,检测灵敏度高,PCR扩增后,一些表达量很低的mRNA也能被检测出 来,应用PCR及DNA测序,两种技术简单易行,目前已被成功地用来分离小麦热激蛋白基因(Joshi等,1996)和水稻蔗糖调节基因(Tseng等, 1995)等。
  7 减法杂交(Subtractive hybridization)
  Lee等1991年提出减法杂交技术 (Lee等,1991),植物在生长发育过程中不同组织或同一组织的不同发育阶段,由于基因特异性的表达,其mRNA表现不同,这样从表达特异基因的组织 中提取 mRNA,反转录为cDNA,从无特异基因表达的组织中提取mRNA,两者杂交,在表达特异基因的组织和无特异基因表达的组织中均表达的基因产物形成杂交 分子,而特异mRNA转录的cDNA仍保持单链状态,把这种单链cDNA分离出来即为差异表达的基因,Chong等用此技术克隆了小麦春化相关基因 (Chong等,1994)。
  8 PCR扩增克隆
  这是一种参考已知基因的序列克隆基因的方法。目前已经知道了很多植物基因的序 列,当克隆类似基因时可先从Gene bank库中找到有关基因序列,用PCR方法克隆不同植物的基因。基本方法是根据已知基因的序列设计并合成一对引物,从植物中提取DNA进行PCR扩增, 扩增的片段纯化后连接到合适的载体上,用酶切分析和序列分析检测重组子,并与已知基因序列进行比较,如目前已在玉米、水稻、向日葵、巴西豆等植物中分离出 富含甲硫氨酸的蛋白及其编码基因,根据Masumura等(1989)发表的10KD水稻醇溶蛋白基因序列合成一对引物,王广立等克隆了水稻10KD醇溶 蛋白基因(王广立等,1994)。
  9 依据序列同源性克隆基因
  生物的种、属之间编码基因序列的同源性高于非编码区的序列。此方 法的基本作法是在其它种属的同源基因被克隆的前提下,构建cDNA文库或基因组文库,然后以已知的基因序列为探针来筛选目的克隆。马德钦等根据文献报道的 甜菜碱醛脱氢酶(BADH)基因的序列作了菠菜甜菜碱醛脱氢酶基因的克隆和序列分析(马德钦等,1996)。
  综上所述,可见发现和克隆基 因的过程是艰巨和富有收获的,几十年来各国科学家在基因克隆这一最激动人心的生物高技术领域内走过了艰难而又曲折的历程,从而创造和发展了上述种种植物基 因克隆的方法,使人类在认识自然、掌握自然的道路上又前进了一步。前辈所创造的成就和技术无疑为我们成功地克隆植物基因提供了快捷和高效的途径。利用已知 序列克隆基因,用同种或同属的已知的同源序列筛选基因都比较容易,适合于克隆那些研究较晚的许多重要农作物的基因。获得极纯的蛋白质是功能克隆的关键,随 着蛋白质纯化技术的提高,功能克隆将发挥它的潜在作用。随着植物遗传图谱上基因定位基础研究工作的提高,定位克隆将发挥其巨大的作用。


现代生物技术在种植业中应用的优越性?大神们帮帮忙
利用植物基因工程技术,改良作物蛋白质成分,提高作物中必需的氨基酸含量,培育抗病毒、抗虫害、抗除草剂的工程植株以及抗盐、抗旱等逆境植株,在当前农业生产中已显示出巨大的经济效益,并展示了植物基因工程在未来农业生产中的广阔前景。 品质育种 高产作物:最早运用基因克隆技术的基因是植物种子、块茎等贮藏...

抗虫烟草是用下列哪项生物技术培育出来的( )A.发酵技术B.克隆技术C...
A、发酵技术在食品的制作中具有重要的意义,发酵技术是指利用微生物的发酵作用,运用一些技术手段控制发酵过程,a规模的生产发酵产品的技术.A错误.B、克隆技术本身的含义是无性繁殖,即由同一下祖先的细胞分裂繁殖而形成的纯细胞系,该细胞系中每下细胞的基因彼此相同.B错误.C、转基因技术就是把一下...

科学家将鱼的抗冻蛋白基因导入烟草和番茄中,从而提高其耐寒能力,这种技 ...
B

最初开始到现在必看的动画列表,祈祷神降临中~
渡濑老师续《不》后的又一经典动画作品,人物依然美型,画风依然成熟,情节以传说的仙女的羽衣为背景展开,人物的情感刻画深刻, 我一直都喜欢渡濑老师的作品,无奈只有两部拍成动画,喜欢看帅哥的,要看哦~ 《天使怪盗》 魔法+爱情+校园 已完结 两个可爱的14岁小姐妹,(个人比较喜欢姐姐),和14岁男生发生的三角恋,恩...

科学家将鱼的抗冻蛋白基因导入烟草和番茄中,从而提高其耐寒能力,这种技 ...
基因工程就是在分子水平上进行的遗传操作.按照预先设计好的蓝图,把一种生物的基因分离出来,然后转入另一种生物的体内,在体外进行巧妙的拼接组合,然后转入另一种生物体内,从而改造其某些遗传性状.转基因技术就是把一个生物体的基因转移到另一个生物体DNA中的生物技术.由于基因控制着生物性状的表达,...

我国转基因食品的发展
1981年,第一个Bt毒素蛋白基因被克隆,至今已有近180个不同的Bt毒素蛋白基因被克隆。1987年6月,比利时的Montagu实验室用全长的CryIA(b)和前端缺失的CrylA(b)基因转化烟草,获得了抗烟草天蛾的植株,并证明前端缺失、只具有编码毒性蛋白区域的基因更利于抗虫基因的表达。Perlak等对CrylA(b)基因进行了...

告诉我一些歇斯底里,罗曼蒂克,之类的译音词
现在随着科技的发展和国际交往的需要,越来越多的外来语进入了汉语,如:饮食类的布丁( pudding)、比萨饼(pizza)、三明治( sandwich)、 汉堡包( hamburger)、 色拉(salad)、冰激凌 (ice cream);电子科技类的雷达(radar)、克隆(clone)、雷射( laser)、计算机的“黑客”( hacker)、因...

生物科学技术发展的近况及其对人类社会的影响。
如果人人都争相克隆,那么谁来决定哪些人可以克隆?克隆人的标准是什么?此外,假设克隆人问世以后,克隆人的身份问题,克隆人的社会地位、权力问题以及克隆人会不会遭到社会的歧视等问题都是摆在人们面前的亟待解决的难题。克隆对社会观念改变的影响:为了人类的生存和发展,我们确实需要转变观念。我们要转变...

吸烟的危害有哪些?如何临床戒烟?
烟草几乎可以损害人体的所有器官,与吸烟相关的疾病及病变包括高血压、冠心病、中风、慢性阻塞性肺疾病、哮喘、癌症(包括肺、唇、口、鼻、咽、喉、食管、胃、肝、肾、膀胱、胰腺和子宫颈的肿瘤)、消化性溃疡、血栓闭塞性脉管炎、阳萎、主动脉瘤、周围血管病、粒细胞性白血病、白内障、克隆病、髋关节骨折...

我国科学家已成功培育出抗虫烟草,他们采取的技术是( )A.嫁接技术B.转...
基因是指染色体与生物形状相关的小单位;性状是指生物的形态特征,生理特性和行为方式.基因控制生物的性状.有一种苏云金杆菌能产生杀虫毒素,科学家用显微注射技术将控制这一毒素合成的基因成功转入到普通烟草细胞的DNA分子上,使烟草获得了抗虫能力,培育出转基因抗虫烟草.这种技术称为转基因技术.因此我...

平阳县13295305992: 获得一个功能未知的基因克隆后,怎样才能阐明该基因的功能?根据某种真核生物提出具体的研究方案.
班选安谱: 我也在做这方面的工作,我目前的理解是:基因克隆出来之后转入表达载体,然后侵染转入植物(拟南芥,烟草之类的),处理之后通过测量生理指标说明基因的功能.

平阳县13295305992: 克隆一个新基因,通常要对其编码的蛋白质进行功能预测,为什么 -
班选安谱: 克隆一个新基因,通常要对其编码的蛋白质进行功能预测,为什么 一般的研究思路(针对真核细胞蛋白):1. 克隆后,在细胞内过量表达,看有啥变化2. 检测不同细胞内的表达水平,设计RNAi, 在表达水平高的细胞内阻断该蛋白的产生.看有啥变化.3. 至于在大肠杆菌中的表达,是要研究蛋白质本身的性质,比如结构等,再用到.

平阳县13295305992: 如何克隆一个基因?然后如何研究该基因的功能? -
班选安谱: 首先你要查阅文献看该种基因在何种组织中表达较高,并确定打算用何种载体在何种细胞中表达,根据载体上的酶切位点设计并合成PCR引物(5'端要用酶切位点修饰),然后提取该组织进行RT-PCR,将扩出的条带胶回收并测序,如果测序正确,则将PCR产物与载体一并酶切,然后将基因连入载体并转化入细菌,提取质粒,将提取的质粒转入细胞,用ELISA测细胞上清中的蛋白,裂解细胞用RT-PCR扩增该基因,用westernblot检测细胞中蛋白的表达,用组化染色标记该细胞,以验证基因是否转入细胞并在细胞中表达,以上这些成功后就可做功能的研究.

平阳县13295305992: 转基因烟草的获得需经过哪些基本步骤 ? -
班选安谱: 目的基因的克隆,将目标基因构建到载体上,采用农杆菌侵染或是基因枪法,组织培养诱导成苗,抗性筛选转基因植株及PCR检测鉴定

平阳县13295305992: 科学家成功地把人和抗病毒干扰素基因连接到烟草细胞DNA分子上,使烟草获得了抗病毒的能力,这项技术称为 -
班选安谱: 基因是指染色体与生物性状相关的小单位;性状是指生物的形态特征,生理特性和行为方式.基因控制生物的性状.科学家成功地把人的抗病毒干扰素基因连接到烟草细胞的DNA分子上,使烟草获得了抗病毒能力,是利用改变烟草基因的方法,用显微注射技术将人的抗病毒干扰素基因注入到烟草的DNA里,培育出抗病毒烟草,这种技术称为转基因技术.可见D符合题意. 故选:D

平阳县13295305992: 如何研究一个未知基因的功能 -
班选安谱: 查查与其同源的基因在其它生物尤其是亲缘关系很近的生物体内有没有已经被证明功能的,或者猜想与什么功能有关的.寻找突变体(该基因缺失的个体)或者设计序列沉默该基因,然后观察其表型和正常个体有什么差别.寻找该基因过量表达的个体,观察表型和一般个体的差异,也可以作为一个参考.这些知识给你的研究提供思路,最后你要克隆得到该基因,在一个该基因缺失的突变体(株)内表达该基因,如果你在该个体内检测到表达并且该个体和一般个体性状差异消失,那么证明该个体是控制此性状的基因(之一).

平阳县13295305992: 载体与表达载体在结构上的区别 -
班选安谱: 载体(克隆载体)一般只用于基因的克隆、测序,所以它一般不需要来有驱动基因表达的启动子,或者在构建克隆载体的时候不需要考虑读码框的问题.但是表达载体一般包括能够在源一定宿主中驱动基因表达的启动子(比如在双子叶植物中驱动基因表达的烟草花叶病毒的启动子35S,或知者在单子叶中的UBI启动子),同时在构建表达载体时还需要考虑读码框的正确性.另外,具体到一些表达载体,可能还有T-DNA结构,用于将道目的基因整合到宿主染色体上.

平阳县13295305992: 查询基因序列数据库检索获得烟草肌动蛋白基因的完整序列,设计实验方案从烟草中克隆该基因 -
班选安谱: 既然已经查到了烟草肌动蛋白基因的完整序列,就可以 1. 根据这个序列设计两段的扩增引物; 2. 提取烟草的RNA,并反转成cDNA库; 3. 用步骤一中设计的引物以步骤二中扩增的cDNA为模板,利用PCR技术就可以克隆得到该基因

平阳县13295305992: 设计实验克隆基因 -
班选安谱: 1、 获得待克隆的DNA片段(基因); 2、 目的基因与载体在体外连接; 3、 重组DNA分子导入宿主细胞; 4、 筛选、鉴定阳性重组子; 5、 重组子的扩增与/或表达.

平阳县13295305992: 如何验证一个基因在基因组中是单拷贝 酶切是怎么做的 -
班选安谱: 如何验证一个基因在基因组中是单拷贝 酶切是怎么做的 基因(遗传因子)是具有遗传效应的DNA片段(部分病毒如烟草花叶病毒、HIV的遗传物质是RNA).基因支持着生命的基本构造和性能.储存着生命的种族、血型、孕育、生长、凋亡等过程的全部信息.环境和遗传的互相依赖,演绎着生命的繁衍、细胞分裂和蛋白质合成等重要生理过程.生物体的生、长、衰、病、老、死等一切生命现象都与基因有关.它也是决定生命健康的内在因素.因此,基因具有双重属性:物质性(存在方式)和信息性(根本属性).

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网