叶绿素a和叶绿素b的作用

作者&投稿:时砖 (若有异议请与网页底部的电邮联系)
叶绿素a和叶绿素b有什么区别~

  红光和蓝紫光。
  在颜色上,叶绿素a 呈蓝绿色,而叶绿素b 呈黄绿色。叶绿素a的生物合成途径,是由琥珀酰辅酶A和甘氨酸缩合成δ-氨基乙酰丙酸,两个δ-氨基乙酰丙酸缩合成吡咯衍生物胆色素原,然后再由4个胆色素原聚合成一个卟啉环──原卟啉Ⅳ,原卟啉Ⅳ是形成叶绿素和亚铁血红素的共同前体,与亚铁结合就成亚铁血红素,与镁结合就成镁原卟啉。镁原卟啉再接受一个甲基,经环化后成为具有第Ⅴ环的原脱植醇基叶绿素,后者经光还原、酯化等步骤而形成叶绿素a。叶绿素b是叶绿素的其中一种,常作为光合作用的天线色素吸收光能。叶绿素b比叶绿素a多一个羰基,因此更容易溶于极性溶剂。它的颜色是黄绿色,主要吸收蓝紫光。

叶绿体中的色素包括两大类:叶绿素和类胡萝卜素,叶绿素又包括叶绿素a和叶绿素b,叶绿体中的色素都能够吸收光能,但只有少数特殊状态下的叶绿素a才有转化光能的作用,也就是说类胡萝卜素和叶绿素b以及大部分的叶绿素a会将它们吸收的光能传递给少数特殊状态下的叶绿素a,再由它将光能转化成电能和化学能。可见,少数特殊状态下的叶绿素a具有吸收和转化光能的作用,而大部分的叶绿素a 和全部叶绿素b具有吸收和传递光能的作用

叶绿素
chlorophyll
光合作用膜中的绿色色素,它是光合作用中捕获光的主要成分。
[编辑本段]简介
一类与光合作用(photosynthesis)有关的最重要的色素。光合作用是通过合成一些有机化合物将光能转变为化学能的过程。叶绿素实际上见於所有能营光合作用的生物体,包括绿色植物、原核的蓝绿藻(蓝菌)和真核的藻类。叶绿素从光中吸收能量,然后能量被用来将二氧化碳转变为碳水化合物。
叶绿素有几个不同的类型∶叶绿素a和b是主要的类型,见於高等植物及绿藻;叶绿素c和d见於各种藻类,常与叶绿素a并存;叶绿素c罕见,见於某些金藻;细菌叶绿素见於某些细菌。在绿色植物中,叶绿素见于称为叶绿体的细胞器内的膜状盘形单位(类囊体)。叶绿素分子包含一个中央镁原子,外围一个含氮结构,称为卟啉环;一个很长的碳-氢侧链(称为叶绿醇链)连接於卟啉环上。叶绿素种类的不同是某些侧基的微小变化造成。叶绿素在结构上与血红素极为相似,血红素是见于哺乳动物和其他脊椎动物红血球内的色素,用以携带氧气。
分子立体模型绿色植物是利用空气中的二氧化碳、阳光、泥土中的水份及矿物质来为自己制造食物,整个过程名为“光合作用”,而所需的阳光则被叶子内的绿色元素吸收,这一种绿色的有机化合物就是叶绿素[1]。
高等植物叶绿体中的叶绿素主要有叶绿素a 和叶绿素b 两种(分子式: C40H70O5N4Mg)属于合成天然低分子有机化合物。叶绿素不属于芳香族化合物。它们不溶于水,而溶于有机溶剂,如乙醇、丙酮、乙醚、氯仿等。在颜色上,叶绿素a 呈蓝绿色,而叶绿素b 呈黄绿色。在右图所示的叶绿素的结构图中,可以看出,此分子含有3种类型的双键,即碳碳双键,碳氧双键和碳氮双键。按化学性质来说,叶绿素是叶绿酸的酯,能发生皂化反应。叶绿酸是双羧酸,其中一个羧基被甲醇所酯化,另一个被叶醇所酯化。
叶绿素分子含有一个卟啉环的“头部”和一个叶绿醇的“尾巴”。镁原子居于卟啉环的中央,偏向于带正电荷,与其相联的氮原子则偏向于带负电荷,因而卟啉具有极性,是亲水的,可以与蛋白质结合。叶醇是由四个异戊二烯单位组成的双萜,是一个亲脂的脂肪链,它决定了叶绿素的脂溶性。叶绿素不参与氢的传递或氢的氧化还原,而仅以电子传递(即电子得失引起的氧化还原)及共轭传递(直接能量传递)的方式参与能量的传递。
卟啉环中的镁原子可被H+、Cu2+、Zn2+所置换。用酸处理叶片,H+易进入叶绿体,置换镁原子形成去镁叶绿素,使叶片呈褐色。去镁叶绿素易再与铜离子结合,形成铜代叶绿素,颜色比原来更稳定。人们常根据这一原理用醋酸铜处理来保存绿色植物标本。
叶绿素共有a、b、c和d4种。凡进行光合作用时释放氧气的植物均含有叶绿素a;叶绿素b存在于高等植物、绿藻和眼虫藻中;叶绿素c存在于硅藻、鞭毛藻和褐藻中,叶绿素d存在于红藻。
叶绿素a的分子结构由4个吡咯环通过4个甲烯基(=CH—)连接形成环状结构,称为卟啉(环上有侧链)。卟啉环中央结合着1个镁原子,并有一环戊酮(Ⅴ),在环Ⅳ上的丙酸被叶绿醇(C20H39OH)酯化、皂化后形成钾盐具水溶性。在酸性环境中,卟啉环中的镁可被H取代,称为去镁叶绿素,呈褐色,当用铜或锌取代H,其颜色又变为绿色,此种色素稳定,在光下不退色,也不为酸所破坏,浸制植物标本的保存,就是利用此特性。在光合作用中,绝大部分叶绿素的作用是吸收及传递光能,仅极少数叶绿素a分子起转换光能的作用。它们在活体中大概都是与蛋白质结合在一起,存在于类囊体膜上。
叶绿醇是亲脂的脂肪族链,由于它的存在而决定了叶绿素分子的脂溶性,使之溶于丙酮、酒精、乙醚等有机溶剂中。主要吸收红光及蓝紫光(在640-660nm的红光部分和430-450nm的蓝紫光强的吸收峰),因为叶绿素基本上不吸收绿光使绿光透过而显绿色,由于在结构上的差别,叶绿素a呈蓝绿色,b呈黄绿色。在光下易被氧化而退色。叶绿素是双羧酸的酯,与碱发生皂化反应。
[编辑本段]叶绿素对人体的作用
造血功能。诺贝尔奖得奖人Dr.Richard Willstatter和Dr.Hans Fisher发现,叶绿素的分子与人体的红血球分子在结构上很是相似,唯一的分别就是各自的核心为镁原子与铁原子。因此,饮用叶绿素对产妇与因意外失血者会有很大的帮助。
帮助解除体内杀虫剂与药物残渣。营养学家Bernard Jensen博士指出,叶绿素能除去杀虫剂与药物残渣的毒素,并能与辐射性物质结合而将之排出体外。此外,他也发现一般上健康的人会比病患者拥有较高的血球计数,但通过吸收大量的叶绿素之后,病患者的血球计数就会增加,健康状况也会有所改善。
养颜美肤。新英国医药期刊曾经做过这样的报导:叶绿素有助于克制内部感染与皮肤问题。美国外科杂志报导:Temple大学在1200名病人身上,尝试以叶绿素医治各种病症,效果极佳。
[编辑本段]叶绿素在食品加工与储藏中的变化
① 酸和热引起的变化
绿色蔬菜加工中的热烫和杀菌是造成叶绿素损失的主要原因。在加热下组织被破坏,细胞内的有机酸成分不再区域化,加强了与叶绿素的接触。更重要的是,又生成了新的有机酸,如乙酸、吡咯酮羧酸、草酸、苹果酸、柠檬酸等。由于酸的作用,叶绿素发生脱镁反应生成脱镁叶绿素,并进一步生成焦脱镁叶绿素,食品的颜色转变为橄榄绿、甚至褐色。pH是决定脱镁反应速度的一个重要因素。在pH9.0时,叶绿素很耐热;在pH3.0时,非常不稳定。植物组织在加热期间,其pH值大约会下降1,这对叶绿素的降解影响很大。提高罐藏蔬菜的pH是一种有用的护绿方法,加入适量钙、镁的氢氧化物或氧化物以提高热烫液的pH,可防止生成脱镁叶绿素,但会破坏植物的质地、风味和维生素C。
② 酶促变化
在植物衰老和储藏过程中,酶能引起叶绿素的分解破坏。这种酶促变化可分为直接作用和间接作用两类。直接以叶绿素为底物的只有叶绿素酶,催化叶绿素中植醇酯键水解而产生脱植醇叶绿素。脱镁叶绿素也是它的底物,产物是水溶性的脱镁脱植叶绿素,它是橄榄绿色的。叶绿素酶的最适温度为60~82℃,100℃时完全失活。
起间接作用的有蛋白酶、酯酶、脂氧合酶、过氧化物酶、果胶酯酶等。蛋白酶和酯酶通过分解叶绿素蛋白质复合体,使叶绿素失去保护而更易遭到破坏。脂氧合酶和过氧化物酶可催化相应的底物氧化,其间产生的物质会引起叶绿素的氧化分解。果胶酯酶的作用是将果胶水解为果胶酸,从而提高了质子浓度,使叶绿素脱镁而被破坏。
③ 光解
在活体绿色植物中,叶绿素既可发挥光合作用,又不会发生光分解。但在加工储藏过程中,叶绿素经常会受到光和氧气作用,被光解为一系列小分子物质而褪色。光解产物是乳酸、柠檬酸、琥珀酸、马来酸以及少量丙氨酸。因此,正确选择包装材料和方法以及适当使用抗氧化剂,以防止光氧化褪色。
[编辑本段]叶绿素参与全球碳循环
日本发现叶绿素D可能影响全球碳循环。
东京2008年8月,日本一研究小组在新一期美国《科学》杂志上报告说,一种能使光合作用在近红外线照射下进行的物质——叶绿素D在地球海洋与湖泊中广泛存在,这种叶绿素可能是地球上碳循环的驱动力之一。
此前的研究认为,叶绿素D只存在于少数海洋藻类内部,分布在海洋中很有限的海域,对地球碳循环的作用可以忽略不计。但日本海洋研究开发机构和京都大学联合进行的新研究发现先前的结论有误。
这两所机构发表的新闻公报说,研究人员从北冰洋、日本的相模湾和琵琶湖、南极水域等水温和盐分浓度差异较大的9处水域采集水底堆积物,结果发现,所有堆积物中都含有叶绿素D及其光合作用的产物。
公报说,叶绿素D是吸收波长700纳米至750纳米的近红外线进行光合作用的唯一色素,上述发现说明近红外线在光合作用中得到了利用,而且可能对地球上的碳循环产生了影响。
研究人员估计,若将全球范围内叶绿素D吸收的二氧化碳换算成碳,每年可能约有10亿吨,相当于大气中平均每年二氧化碳增加量的约四分之一。

叶绿素共有a、b、c和d4种。凡进行光合作用时释放氧气的植物均含有叶绿素a;叶绿素b存在于高等植物、绿藻和眼虫藻中;叶绿素c存在于硅藻、鞭毛藻和褐藻中,叶绿素d存在于红藻。
叶绿素a的分子结构由4个吡咯环通过4个甲烯基(=CH—)连接形成环状结构,称为卟啉(环上有侧链)。卟啉环中央结合着1个镁原子,并有一环戊酮(Ⅴ),在环Ⅳ上的丙酸被叶绿醇(C20H39OH)酯化、皂化后形成钾盐具水溶性。在酸性环境中,卟啉环中的镁可被H取代,称为去镁叶绿素,呈褐色,当用铜或锌取代H,其颜色又变为绿色,此种色素稳定,在光下不退色,也不为酸所破坏,浸制植物标本的保存,就是利用此特性。在光合作用中,绝大部分叶绿素的作用是吸收及传递光能,仅极少数叶绿素a分子起转换光能的作用。它们在活体中大概都是与蛋白质结合在一起,存在于类囊体膜上。

简单的说
1绿素a和b都可以吸收光能
但只有少数处于激发状态的叶绿素a可以将光能转化为电能

2某种叶绿素a和叶绿素b的比值反映植物对光能利用得多少
比如养生植物叶绿素a和叶绿素b的比值较大
而阴生植物叶绿素a和叶绿素b的比值较小

只要是叶绿素都可以吸收光能,有少数处于特殊形态的的叶绿素b可以传化光能.叶绿素a和叶绿素b之间数量上的差别,对植物无本质上的影响.

叶绿素都可以吸收光能,有少数处于特殊形态的的叶绿素a可以传化光能 比例变化在高中没有说吧


叶绿体色素带从上到下依次是什么颜色?
色素带从上到下:胡萝卜素,橙黄色,叶黄素,黄色,叶绿素a,蓝绿色,叶绿素b,黄绿色。其中胡萝卜素和叶黄素属于类胡萝卜素,吸收蓝紫光。叶绿素a 和叶绿素b属于叶绿素,吸收蓝紫光和红光。光合色素及光系统 1、光合色素 叶绿体由双层膜、类囊体和基质三部分组成。类囊体是单层膜同成的扁平小囊,沿...

通常叶绿素是类胡萝卜素的几倍 含量 - -
正常叶子的叶绿素和类胡萝卜素的分子比例约为4∶1 叶子呈现的色彩是叶子中各种色素的分析显露.其中主要是绿色的叶绿素和黄色的类胡萝卜素之间的比例.平常来说,分子.一般叶子的叶绿素和类胡萝卜素的分子比例约为4∶1,叶绿素a与叶绿素b的比约为3∶1,叶黄素与胡萝卜素之比约2∶1,

叶绿素a主要吸收什么光?
叶绿素a主要吸收红光,叶绿素b主要吸收蓝紫光。叶绿体是植物细胞内最重要、最普遍的质体,它是进行光合作用的细胞器。叶绿体利用其叶绿素将光能转变为化学能,把CO2与水转变为糖。叶绿体是世界上成本最低、创造物质财富最多的生物工厂。几乎可以说一切生命活动所需的能量来源于太阳能(光能)。绿色植物是主...

叶绿素b是什么以及有什么作用?
叶绿素分为叶绿素a和叶绿素b。叶绿素b不能进行光合作用,但它能吸收光能,然后把光能全部传给叶绿素a。高等植物“绿色工厂”中的辅助色素是叶绿素b,它是黄绿色的,所以叶片外表是绿的。红藻和褐藻(比如海带)的辅助色素是红的和褐色的,但进行光合作用的也是叶绿素a,尽管外表可以有各种颜色。

叶绿素用什么试剂提取
叶绿素用乙醇试剂提取,叶绿素是高等植物和其它所有能进行光合作用的生物体含有的一类绿色色素,叶绿素a和叶绿素b均可溶于乙醇、乙醚和丙酮等溶剂,不溶于水,可用极性溶剂如丙酮、甲醇、乙醇、乙酸乙酯等提取叶绿素。叶绿素是植物进行光合作用的主要色素,是一类含脂的色素家族,位于类囊体膜,叶绿素吸收大部分...

阳生植物 阴生植物叶绿素含量比较
阳生植物的叶绿素含量高于阴生植物。阳生植物有较大的基粒,基粒片层数目多的多,叶绿素含量也高。阴生植物在较低的光照条件下充分的吸收光线,叶绿素a\/叶绿素b的比值小,能够强烈的利用蓝紫光。阳性植物叶片小而厚,表面具蜡质或绒毛,叶脉密,单位面积内气孔多,叶绿素含量高,体内含盐分多,渗透压...

光合作用的色素分布在叶绿体的哪里?
主要含有叶绿素(叶绿素a和叶绿素b)、类胡萝卜素(胡萝卜素和叶黄素),叶绿素a和叶绿素b主要吸收蓝紫光和红光,胡萝卜素和叶黄素主要吸收蓝紫光。这些色素吸收的光都可用于光合作用。叶绿素的含量最多,遮蔽了其他颜色,而且,叶绿素吸收绿光最少,绿光被反射,所以呈现绿色。主要功能是进行光合作用。叶绿...

叶绿体色素(四种)和叶绿素(两种),分别是哪几种,并有什莫区别??_百度...
叶绿体色素分为叶绿素a,叶绿素b,胡萝卜素,叶黄素,它们颜色分别为蓝绿色,黄绿色,橙黄色黄色。吸叫光谱也不一样.叶绿素分为叶绿素a叶绿素b。

秋天树叶为什么会变色?
每年秋天,树叶都将发生一次神奇的变化,当看到夏天原本翠绿的叶子慢慢变得枯黄,然后凋零,人们不禁会问,为什么树叶会变色?这一切都归结为三种重要的色素:叶绿素、类胡萝卜素和花青素。叶绿素可能是人们最为熟悉的,叶绿素含有两种色素,即叶绿素a和叶绿素b,前者的颜色为蓝绿色,后者的颜色为黄绿色。几乎...

叶绿素a~f 是会同时存在吗?
叶绿素a和b是最常见的两种叶绿素,它们共同存在于大多数植物中,其中叶绿素a是主要的光合色素,而叶绿素b是辅助色素。叶绿素c通常出现在藻类中,在其中担任类似于叶绿素b的作用。叶绿素d和f则存在于一些特定的藻类中,其中叶绿素f是一种由蓝藻和一些绿藻产生的叶绿素,它们在吸收光的波长和光合作用的过程...

深州市15864073319: 光合作用中叶绿素A和叶绿素B的作用分别是? -
宗政聂舒血:[答案] 叶绿体中的色素包括两大类:叶绿素和类胡萝卜素,叶绿素又包括叶绿素a和叶绿素b,叶绿体中的色素都能够吸收光能,但只有少数特殊状态下的叶绿素a才有转化光能的作用,也就是说类胡萝卜素和叶绿素b以及大部分的叶绿素a会...

深州市15864073319: 叶绿素a与叶绿素b 的功能有何不同 -
宗政聂舒血:[答案] 叶绿素A和B都可以吸收和传递光能. 但是少数处于特殊状态的叶A可以将太阳能转化为电能在叶片中传递

深州市15864073319: 牙膏里加叶绿素的作用(叶绿素的作用)
宗政聂舒血: 1、叶绿素包括:叶绿素a,叶绿素b,叶黄素,胡萝卜素2、叶绿素a有吸收,转化的作用,其他的色素,只有吸收传递的作用,他们吸收后传递给叶绿素a,让他来转化为化学能.

深州市15864073319: 叶绿素a和叶绿素b主要吸收什么颜色的光? -
宗政聂舒血: 叶绿素a主要吸收红光,叶绿素b主要吸收蓝紫光 意义:为了区别阴生植物与阳生植. 阴生植物的叶绿素b和叶绿素a的比值小,所以阴生植物能强烈地利用蓝光,适应于遮阴处生长.

深州市15864073319: 叶绿体中四种色素的作用分别是什么?比如资料书上说只有叶绿素a可以吸收,转化光能,那其它三的作用呢?我想问的是,其它三种色素是不是只传递不... -
宗政聂舒血:[答案] 绝大多数的叶绿素a和全部的叶绿素b、叶黄素、类胡萝卜素都能吸收和传递光能. 只有极少数特殊状态的叶绿素a能够吸收并转化光能,将光能转换成电能.这部分叶绿素a被称为中心叶绿素

深州市15864073319: 叶绿素有哪些方面的营养? -
宗政聂舒血:[答案] 叶绿素为镁卟啉化合物,包括叶绿素a、b、c、d、f以及原叶绿素和细菌叶绿素等. 叶绿素有造血、提供维生素、解毒、抗病等多种用途. 叶绿素包括:叶绿素a,叶绿素b,叶黄素,胡萝卜素.叶绿素a有吸收,转化的作用,其它的色素,只有吸收传递...

深州市15864073319: 叶绿素a和叶绿素b分别主要吸收什么光?光合作用暗反应阶段.ATP分解 生成大量能量还是少量能量 -
宗政聂舒血:[答案] 叶绿素a和b主要吸收红光和蓝光,胡萝卜素和叶黄素主要吸收蓝紫光.

深州市15864073319: 叶绿体中色素的作用是______,叶绿素主要吸收______,类胡萝卜素主要吸收______. -
宗政聂舒血:[答案] 叶绿体中的色素可吸收可见的太阳光,主要包括叶绿素和类胡萝卜素两种.叶绿素主要吸收红光和蓝紫光,叶绿素主要有叶绿素a和叶绿素b两种,叶绿素a呈蓝绿色,叶绿素b呈黄绿色;类胡萝卜素主要吸收蓝紫光,主要包括胡萝卜素和叶黄素两种,...

深州市15864073319: 叶绿素有什么成份?医药功能
宗政聂舒血: 叶绿素的成分是: 元素:碳、氢、氧、氮、镁. 引: 高等植物叶绿体中的叶绿素(chlorophyll ,chl)主要有叶绿素a 和叶绿素b 两种.它们不溶于水,而溶于有机溶剂,如...

深州市15864073319: 叶绿素的作用 -
宗政聂舒血:[答案] 叶绿素是植物进行光合作用的主要色素,是一类含脂的色素家族叶绿素,位于类囊体膜.叶绿素吸收大部分的红光和紫光但反射绿光,所以叶绿素呈现绿色,它在光合作用的光吸收中起核心作用.叶绿素为镁卟啉化合物,包括叶绿素a、b、c、d、f以及...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网