浅层地热能开发利用的世界现状及在我国的发展前景

作者&投稿:达秒 (若有异议请与网页底部的电邮联系)
浅层地热能开发利用现状、发展趋势与对策~

陶庆法 胡杰
(国土资源部地质环境司)
1 概述
地球的内部是一个巨大的热源库,蕴藏着无比巨大的热能。浅层地热能是地球热能的重要组成部分,通常是指位于地球表层变温层之下,蕴藏在地壳浅部岩(土)体中的低温地热资源,其热能主要来自地球深部的热传导。浅层地热能的温度略高于当地平均气温3~5℃,温度比较稳定,分布广泛,开发利用方便。具有十分广阔的开发利用前景。浅层地热能的利用,主要是通过热泵技术的热交换方式,将赋存于地层中的低位热源转化为可以利用的高位热源,既可以供热,又可以制冷。目前浅层地热能的可经济开采利用的深度一般小于200m。
热泵技术的不断完善与广泛应用,为浅层地热能的开发利用提供了条件。用于浅层地热能开发利用的热泵系统,统称为“地源热泵系统”,它是以岩土体、地下水(或地表水)为低温热源,由水源热泵机组、地热能交换系统、建筑物内系统组成的供热空调系统,是一种节能环保的空调系统。根据地热能交换形式的不同,地源热泵系统分为地埋管地源热泵系统、地下水地源热泵系统和地表水地源热泵系统。
地源热泵技术是一种利用浅层地热能的既可以取热供暖又可以取冷制冷的高效节能的空调技术。其工作原理是利用地下常温土壤或地下水温度相对稳定的特性,通过输入少量的高品位电能,运用埋藏于建筑物周围的管路系统或地下水与建筑物内部进行热交换,实现低品位热能向高品位转移的冷暖两用空调系统。它由水循环系统、热交换器、地源热泵机组和控制系统组成。冬季代替锅炉从土壤中取热,以30~40℃左右热风向建筑物供暖,夏季代替普通空调向土壤排热,以10~17℃左右冷风给建筑物制冷。同时,还能供应生活用热水。
国内外大量实例表明,采用地源热泵系统开发利用浅层地热能对建筑物进行供暖空调,具有取用方便、无污染、运行费用低等特点。浅层地热能是理想的“绿色环保能源”,热泵技术是“绿色环保技术”,其主要特点是:
(1)资源可持续利用。浅部地热能储层像一个巨大的热能调蓄器,利用热泵系统给建筑物供暖、空调,冬季从地层中取出热量给建筑物供暖,夏季吸收建筑物的热量释放到地层中储存,这样,全年中建筑物冬季采暖所需的热量,总体上可与来自地球深部的传导热量和夏季储存的热量实现平衡,使浅层地热能源能够实现可持续利用。
(2)高效节能。由于浅层地温略高于当地平均气温,比较恒定,冬季供热时温度比环境温度高,所以热泵循环的蒸发温度提高,能效比提高;夏季供冷时,温度比环境温度低,冷却效果提高,机组效率也提高。地源热泵的制冷制热系数可达4.0以上。与传统的空气源热泵相比,高出40%左右,其运行费用仅为普通中央空调的50%~60%,与电热锅炉和电热膜供热相比,可节约70%左右的电能。
(3)无环境污染。地源热泵运行时,除了消耗少量的电能外,需要的仅仅是与地下岩土层(含岩石、土层和空隙中的水)进行热量交换的循环水或其它液体,基本不消耗水、不排泄废物,不对周围环境产生任何污染。
(4)运行费用低。维修量少、自动化程度高,运行费一般只相当于普通供暖空调费用的30%~70%。
(5)一机多用。一套地源热泵就可以实现供热、供冷和生活热水供应,可代替原来的锅炉加空调两套系统,一次性投资降低。
(6)节省土地资源。地源热泵除主机和循环水泵外,没有其它安装设备。与锅炉房相比,省去了水处理间、风机间、烟囱、煤场和渣土场,节约了土地资源。
(7)运行灵活、稳定可靠、使用寿命长:每台机组可独立运行,个别机组发生故障不会影响整个系统的运行。机组运行工况稳定,不受环境温度变化的影响,冬季不需要除霜。热泵的运转部件少,基本上不需要维修,运行稳定可靠,使用寿命可达20年。
(8)自动化程度高:地源热泵一般是全电脑控制,可根据外部负荷的变化,调整压缩机的工作数量,并设有压缩机超温保护、断水保护等多种保护措施,可实现无人值守。
(9)用途广泛:从严寒地区至热带地区均适用。
(10)易于管理。可实现机组独立装表、计费,方便对整个系统的管理。
地源热泵系统的应用受当地水文地质条件的制约。地区的水文地质条件决定了采用地源热泵供暖、空调的可能性及其利用的方式。就一般而论,在地下水位埋藏不深,含水层厚度较大、渗透性能较强、易于回灌的地区,适宜采用以地下水源为载体的地源热泵;在地下水位埋藏浅,松散层厚度大、但渗透差、不易回灌的砂、土层分布地区,适宜采用垂直埋管式地源热泵;地下水位埋藏深,松散层厚度小、岩土层渗透性弱、不具备开采地下水的岩石地区,不适宜采用地源热泵。
2 国际地源热泵技术与浅层地热能应用发展趋势
“热泵”的概念,1912年由瑞士人提出,1946年第一个热泵系统在美国俄勒冈州诞生。1974年起,瑞士、荷兰和瑞典等国家政府逐步资助建立示范工程。20世纪80年代后期,热泵技术日臻成熟。在过去的10年时间里,大约30个国家的热泵平均增长速率达到10%,在国际社会中,由于其在减少二氧化碳方面得到普遍认可而受到广泛重视。
目前,利用热泵技术开发利用浅层地热能较好的国家有美国、北欧、瑞典、瑞士和德国,已有大量装机的国家有加拿大、奥地利、法国和荷兰,开始重视和推广应用的国家有中国、日本、俄罗斯、英国、挪威、丹麦、爱尔兰、澳大利亚、波兰、罗马尼亚、土耳其、韩国、意大利、阿根廷、智利、伊朗等国。
热泵增长较快的主要还是在美国和欧洲。目前全世界装机容量可能接近10100MWt,年均利用能量约59000TJ(16470GWh),实际安装的机组量约900000个,据不完全的统计,目前地源热泵装机容量居多的国家依次是美国、瑞典、德国、瑞士、加拿大、澳大利亚(见表1)。

表1 利用地源热泵装机容量居多的国家

在美国,每年接近安装5万~6万套热泵机组,超过600个学校安装了热泵系统进行供暖和制冷。在瑞士,由于高原气候条件,冬天日照少,水源热泵系统已经以每年15%的速度快速增长。目前,瑞士有超过25万台热泵系统在运行,成为世界上利用热泵密度最大的国家。在英国,尽管地质条件非常复杂。但是热泵技术也从非常小的起步发展到遍及整个英国。涉及领域有:私人建筑、房地产开发、公共设施等。目前,瑞典的地源热泵安装基本占总需求负荷的60%,尤其是进入到21世纪之后,瑞典的热泵安装增长更为迅速,仅2001年热泵销售就突破25000台。澳大利亚虽然大部分国土位于热带,但是引入热泵的数量也达到23000多套。
地源热泵在日、韩、美和中欧、北欧应用较为普遍。据1999年的统计,在住宅供热装置中,地源热泵所占比例,瑞士96%,奥地利38%,丹麦27%。美国1998年地源热泵系统在新建筑中占30%,且以10%的速度稳步增长。其中最著名的地源热泵工程有肯塔基州路易斯威尔的滨水区办公大楼,服务面积15.8×104m2,每月节省运行费用25000美元。随着该项技术的应用发展,其组织的研究也迅速发展。据有关资料介绍,日本国研究出的高温水地源热泵,出水温度达到80~150℃,且其制热系数COP高达8.0。
由于地源热泵技术的日趋成熟,有力地促进了浅层地热能的广泛利用。近几年来,各国浅层地热能的开发利用规模和发展速度都在快速增长。从国外发展趋势看,开发利用浅层地热能(蕴藏于地球浅部岩土体中的低温能源),将是地热资源开发利用的主流和方向。
3 我国浅层地热能开发利用现状
我国的热泵研究始于20世纪50年代,天津大学热能研究所的吕灿仁教授在1954年开展了我国热泵的研究,1965年研制成功国内第一台水冷式热泵机组。但由于多种原因,发展缓慢,直到80年代末90年代初,相关领域开始了新一轮的研究。进入21世纪以来,我国在热泵模型仿真、试验装置、能耗评价以及系统材质研究等方面取得了一批显著成果。随着传统能源的紧缺和人们对开发新能源和再生能源的重视以及热泵技术的日益成熟,热泵技术及浅层低品位地热能的开发利用得到了快速发展。
我国政府十分重视热泵技术和浅层地热能的开发利用工作。1994年3月国务院批准了《中国21世纪议程下的可持续能源计划》。1997年11月原国家科委与美国能源部在北京签署了《关于地热能源生产与应用的合作协议书》,中美两国政府开始了可再生能源领域的技术合作。1998年11月,开始实施《中美两国政府合作推广美国土-气型地源热泵技术工作计划书》,确定了北京计科地源热泵科技有限公司、上海鼎达能源公司、广州信利达公司为中美两国政府地源热泵合作项目的执行单位。按照该计划,1999年正式启动了北京嘉和园国际公寓、宁波服装厂厂房楼、广州松田学院教学主楼三处示范性工程,建筑总面积13.238万m2,其中北京嘉和园国际公寓面积最大,达8.8万m2。2000年6月,由中国科学技术部在北京主办了“美国土-气型地源热泵技术交流大会”,进一步推动了热泵技术的运用。据统计,到2003年底,仅北京计科公司,已建成土-气$#
北京是我国应用地源热泵技术开采浅层地热能对建筑物进行供暖空调较早且发展最快的地区之一。近几年来,采用浅层地热能为建筑物供暖空调的工程数量迅速增加。到2004年底,北京已有200多个单位总计420万m2的建筑面积利用浅层地热能供暖或供冷。其建筑物类型有普通住宅、办公大楼、高级宾馆,也有学校、幼儿园、商场、医院、敬老院、档案馆、体育场馆、厂房、污水场站,景观水池等。其中,地下水地源热泵系统最大单项工程建筑面积达18万m2,地埋管地源热泵系统(又称土壤源热泵系统)最大单项工程建筑面积也已达13万m2。目前由华清地热集团正在实施的地埋管地源热泵系统单项工程——用友软件园,供暖空调面积将达到20万m2。几处代表性的地源热泵供暖空调工程项目见表2。

表2 北京代表性的地源热泵供暖空调工程项目简介

天津也是我国应用地源热泵系统供暖空调较早的地区之一。近年来,已先后在天津开发区第十八大街海滨大道发展公司、天津地矿珠宝公司、天津市中心海河商贸区古文化街等地建立了地源热泵系统供暖空调项目。目前,正在快速发展中。
河南、内蒙古、山东、广东、安徽等地也都开始了开发利用浅层地热能的探索和试点。随着我国能源结构政策的调整,以燃煤和耗电为主的锅炉采暖、空气源热泵供冷的传统方式,将会被更加高效的以浅层地热能为热源(或冷源)的地源热泵供暖(或供冷)方式所取代。随着地源热泵技术的逐步完善,浅层地热能必将成为我国今后一段时期地热能开发利用中的最普遍最主要的能源。在我国建筑物供暖(或供冷)中,浅层地热能所占的比重也将愈来愈高。
4 存在的主要问题
地源热泵技术及其浅层地热能的开发利用,虽然在我国取得了明显成效,但由于发展时间短,总体上还处于起步阶段,地区发展很不平衡,存在的一些问题也日益显现,需要我们认真研究和解决,否则将直接影响着浅层地热资源的科学开发和持续利用。主要问题是:
(1)社会认知程度低。当前社会对浅层地热能资源的认知程度还很低,人们对赋存于地壳表层丰富的浅层地热能资源和特点及其热泵技术了解不多,甚至相当一部分专业设计单位的人员对此也缺乏了解,直接影响浅层地热能这一新型能源的广泛应用。
(2)开发技术水平不高。适合我国特点并满足不同要求的地源热泵系列产品尚未形成,有待积极开发;地源热泵供暖空调项目专业设计人员普遍缺乏,系统设计不匹配和偏保守的问题较突出。土壤埋管换热计算理论还不成熟,缺乏设计标准,工程质量难以保证,广泛应用受到限制。
(3)开发利用工程与资源勘查评价工作脱节,存在一定的盲目性。水文地质条件决定了浅层地热能的开发利用方式和规模。但目前浅层地热能的开发与勘查评价工作大多存在脱节问题,有的开发利用方案的选定缺乏科学依据,开发规模与资源条件不匹配,存在盲目性,导致工程效益不高,工程成功率偏低。因此,浅层地热能的开发利用必须建立在水文地质勘查评价工作的基础上,应对浅层地热能开发利用的可行性、适宜性及开发利用容量进行评价,因地制宜地制定开发利用方案,选定热泵系统类型(是地埋管地源热泵还是地下水型地源热泵等),确定埋管深度、密度等科学数据。
对已经开发利用浅层地热能的工程和地区,大多没有对其影响范围内环境地质体中的岩土体温度、地下水温度及其水质等进行监测,也没有及时分析地热能场的变化规律及开展环境影响评价工作,对未来的变化趋势更是心中无数。
(4)浅层地热能开发利用的技术标准、规范滞后。目前尚缺乏《浅层地热能勘查评价》、《浅层地热能地质环境境影响评价》等技术规范,使勘查评价工作缺乏标准,方法不统一。工程的设计缺乏系统的设计规范,大都处在无标准可依的状态。对开发单位缺乏资质管理,实施的工程也缺乏必要的论证程序。浅层地热能供热(或供冷)是一项系统工程,地上暖通空调系统与地下资源勘查评价及井位、埋管系统的设计、施工等环节,是有机的整体,各专业之间必须统一设计施工,协同作业。否则,浅层地热能供暖(或供冷)工程将会造成热泵系统不匹配或匹配程度差,成功率低的不良后果。
(5)相关技术研发滞后。由于浅层地热能开发利用在我国时间短,一些配套的技术措施和检测设备还跟不上。如深层岩土热物性测试技术和仪器研发、不同区域地下传热模型模拟试验研究、地埋管换热器的传热强化、系统设计软件开发、地源热泵仿真及最佳匹配参数的研究、高性能回填材料的研究等,亟待开发和研制。
(6)缺少必要的扶持和激励政策。浅层地热能资源开发利用潜力很大,资源的可再生、无污染,是任何化石燃料所不能替代的。但初期一次性投入也较大,要取得经济上的规模效益,需要各级政府在财税等政策上予以扶持,否则,全面推广和应用受到一定的限制。就全国而言,目前仅有北京市,出台了鼓励政策,对用热泵技术进行供暖(供冷)的,市财政按照其受益的建筑物面积给以补助。但有些地区不但没有鼓励政策,反而出台了限制政策,如不仅对取出的地下源水收费,而且对回灌到地下的源水还再次收费,增加了企业负担,使企业利用浅层地热能的节能、环保效果未能在经济效益上得到体现,因而大大限制了热泵技术和浅层地热能的利用和发展。
5 对策
浅层地热能的开发利用已逐渐在我国兴起,并呈快速增长之势,近几年,其在用于供暖(空调)方面的发展速度已超过传统意义上的地热资源,随着人们认识水平的提高和示范工程的引鉴,对其开发利用会引起更多人的关注,也将会有越来越多的建筑物供暖空调项目采用浅层地热能资源。为促进浅层地热能资源的合理开发利用,必须采取如下对策措施。
(1)积极开展浅层地热能资源勘查评价,制定开发利用总体发展规划。浅层地热能资源普遍存在于地球表部,分布广泛、取用方便,具有广阔的利用前景已是不争的事实,但采用何种方式开发、可能利用的量、长期利用后对环境的影响程度等,则受到当地具体水文地质条件(地下水埋藏条件,地层结构、含水地层的渗透性、地下水水质等)的限制,只有这些条件查清楚,才能对浅层地热能的利用方式做出正确的选择。就一个地区而论,也才能对适宜浅层地热能开发利用的地区、不同利用方式的地段、可能的利用规模、潜在的环境地质问题等做出合理的判断。
部署开展区域浅层地热能资源勘查评价工作。当前,应先从平原区的重点城市起步,开展以1∶10万比例尺精度为主体的勘查评价工作。以原来开展的水文地质勘查成果为基础,补充必要的获取岩土体热传导率、渗透率等参数的勘查工作。勘查工作深度一般控制在200m以浅。
在勘查评价的基础上,编制浅层地热能开发利用规划,进行合理布局,确定适宜开发利用的地区、圈定不同利用方式(地下水、地埋管)的地段、提出合理的开发利用规模、防治地质灾害和环境地质问题的措施等。
(2)推动示范工程的建设,带动地区浅层地热能资源的开发利用。我国南北差异大,地质条件复杂,浅层地热能在一个地区成功应用的经验受地区具体条件的限制,并不能完全适用于其他地区。不同方式的利用经验,也有其特性和相应的利用模式。浅层地热能在一个地区的推广应用,除了吸收普遍的经验外,更重要的是应结合地区具体的条件,建立符合本地实际的示范性工程,摸索方法、总结经验,推广应用,带动面上的开发利用。
(3)依靠科技进步和创新,提高浅层地热能应用技术水平。浅层地热能利用涉及到资源勘查评价、地下换热、热泵、建筑物内供热(供冷)系统、自动控制等诸方面的配套技术,涉及多学科相互联系、借鉴的应用技术,既需要自身的提高,也需要相互协调配合方面的强化和提高。当前,尤其应加强地下换热技术,适合我国特点和需要的地源热泵产品研制及产品的系列化、标准化,系统设计优化和相关仪器的研制等,以推动整体技术水平的提高。
(4)出台相关政策、激励浅层地热能资源的开发利用:浅层地热能开发利用初投资较高,但运行管理费用低并具有清洁、高效、节能的特点,是具有很好的开发前景和可持续利用的清洁能源,政府应出台相关政策、法规,支持、鼓励浅层地热能资源的开发利用。各级地方政府可以参照北京市政府的做法,对用地热能供暖(或供冷)的,可以按照建成的供暖(或供冷)的建筑面积,财政上给以补贴,以此支持和鼓励热泵技术的推广应用,推进浅层地热能的开发和利用。建议中央财政在可再生能源发展专项资金中,安排一部分资金专门支持和鼓励示范区的浅层地热能的开发利用。
(5)制定相关的技术标准、规范,规范浅层地热能资源的开发利用。2005年11月建设部、国家质检局已联合发布了GB50366-2005地源热泵系统工程技术规范,该规范适用于以岩土体、地下水、地表水为低温热源,以水或添加防冻剂的水溶液为传热介质,采用蒸汽压缩机热泵技术进行供热、空调或加热生活热水的系统工程设计、施工及验收。它的发布与实施,将有利于浅层地热能开发利用工程设计质量的统一。当前,亟需制定和出台浅层地热能勘查评价、浅层地热能地质环境影响评价等技术规范和标准,以规范浅层地热能资源的勘查评价、地源热泵埋管设计、地质环境影响评价等行为,提高浅层地热能的开发利用水平。
(6)开展浅层地热能开发利用示范工程地下换热系统动态监测工作。在已开发利用浅层地热能的地区,选择不同类型的开发利用典型地区,开展地下换热系统的动态监测,进行地下场地水、热均衡动态长期监测和研究,积累数据,为浅层地热能的评价、地下换热系统工程的优化设计、完善标准、保护资源环境提供依据。
(7)建立和完善浅层地热能开发利用数据库及信息系统:浅层地热能开发利用的地下换热系统工程深埋地下,是永久性工程,有的地面建筑物消失了,地下换热系统(地埋管、水源井等)还将长期保存于地下深处,对当地环境和后人的生产、生活等活动有潜在的影响。为加强浅层地热能开发利用的管理与资源的保护,应及早建立全国及省(区、市)浅层地热能开发利用地下热交换工程数据库及信息系统。

一、国外研究利用现状与发展趋势
1.早期发展阶段
浅层地热能的研究与开发利用是随着热泵技术的研究与开发而兴起的。早在186年前(1824年)法国物理学家卡诺奠定了热泵理论基础。之后英国的物理学家焦耳论证了改变气体的压力引起温度变化的原理。英国勋爵汤姆逊教授首先提出了“热量倍增器”可以供暖的设想。1912年,瑞士苏黎世已成功安装了一套以河水作为低品位热源的热泵设备用于供暖,并以此申报专利,这就是早期的水源热泵系统,也是世界上第一个水源热泵系统。
在此之后的几十年,地源热泵基本处于实验研究阶段,并先后有地表水源热泵、地下水源热泵及土壤源热泵系统的问世与发展。20世纪30年代地表水源热泵系统问世,是地源热泵中最早使用的热泵系统形式之一。欧洲第一台较大的热泵装置是1938~1939年间在瑞士苏黎世市政大厅投入运行的,它以河水作为热源,供热能力175k W;20世纪40~50年代,瑞士、英国早期使用的地表水源热泵地下水源热泵系统除了用于建筑物采暖外,还用于游泳池加热和人造丝厂工艺加热和鞋厂空调等。随后欧洲其他一些国家也开始安装地表水源热泵系统,热泵系统的供热量不断增大,性能系数也有很大提高。
地下水源热泵也诞生于20世纪30年代,到1940年美国已安装了15台大型商用热泵,其中大部分是以井水为热源。1937年,日本在大型办公楼内安装了2台194k W 压缩机带有蓄热箱的地下水热泵系统,其性能系数达4.4。至20世纪40~50年代,美国应用的主要是地下水地源热泵。
1941年,第二次世界大战爆发后,影响和中断了空调供暖用热泵技术的研究和发展。二战结束后,热泵技术研究及应用逐步恢复,至1950年美国已有20个厂商和10余所大学研究单位从事热泵开发研究,在当时拥有的600台热泵中,50%用于房屋供暖。地埋管式地源热泵技术初始于美国和英国。1950年前后,两国开始使用地埋管吸收地热作为热源为家用房屋供暖的小型土壤热泵。1952年,美国约出厂1000套热泵,1954年出厂约2000套热泵。由于地源热泵的日趋成熟,有力地促进了浅层地热能的广泛应用。
1957年,美国军用基地住房大量采用热泵供暖代替燃气供热方案,热泵产量达2万套,1963年年产量增加到7.6万套。至20世纪60年代初,美国安装的热泵机组已达近8万台。但当时压缩机质量尚不过关,设备费用高而影响了热泵供暖技术的推广,开始处于停顿状态。
到1964年,热泵可靠性的问题已成为一个十分严峻的问题。60年代电价持续下降,使得电加热器的应用不断增加,限制了热泵的发展。
2.迅速发展阶段
20世纪70年代,世界石油危机的出现,又引起人们对地下水源热泵的关注与兴趣,又开始大量安装与使用地下水源热泵,热泵工业进入了黄金时期。这一时期,世界各国对热泵的研究工作都十分重视,诸如国际能源机构和欧洲共同体都制定了大型热泵发展计划,热泵新技术层出不穷,热泵的用途也在不断地开拓,并广泛应用于空调和工业领域,在能源的节约和环境保护方面起着重大的作用。
热泵真正意义的商业应用也只有近20年的历史。20世纪90年代后,随着环保要求的进一步提高,美国地下水源热泵系统的应用一直呈上升趋势。美国能源信息部的调查表明:美国地下水源热泵的生产量从1994年的5924台上升到1997年的9724台。再如美国,截止到1985年全国共有1.4万台地源热泵,而1997年就安装了4.5万台,到目前为止已安装了40万台,而且每年以10%的速度稳步增长。1998年美国商业建筑中地源热泵系统已占空调总保有量的19%,其中在新建筑中占30%。目前,每年大约有5万套地源热泵在安装,其中开式系统占5%。美国热泵工业已经成立了由美国能源部、环保署、爱迪逊电力研究所及众多地源热泵厂家组成的美国地源热泵协会,该协会在近年中将投入1亿美元从事开发、研究和推广工作。
欧洲一些国家由于采取积极的促进政策(包括财政补贴、减税、优惠电价和广告宣传等),热泵市场得到快速发展。1997年,欧洲发展基金会重新提出热泵发展计划。到2000年,欧洲用于供热、热水供应的热泵总数约为46.7万台,其中地下水源热泵约占11.75%。与美国的热泵发展有所不同,中、北欧如瑞典、瑞士、奥地利、德国等国家主要利用浅部地热资源,地下土壤埋盘管的地源热泵,用于室内地板辐射供暖及提供生活热水。据1999年的统计,在家用的供热装置中地源热泵所占比例,瑞士为96%,奥地利为38%,丹麦为27%。
3.发展趋势
近年来,各国浅层地热能的开发利用规模和发展速度都在快速增长。美国和加拿大一些大学和研究机构,对于土壤源热泵进行了较深入的试验研究,取得了一些重要数据。美国能源部(DOE)、美国环保局(EPA)及爱迪生电器学会(EEI)、国家农业电力合作公司等财团组成一家政府参与的工业设施国际集团,推广热泵供暖系统。目前从国外发展趋势看,开发利用浅层地热能,将是地热资源开发利用的主流和方向。
浅层地热能是宝贵的新型能源。与风能、太阳能等非人力控制的自然资源相比,浅层地热能是一种在开采利用时间上,可人为控制使用的可再生能源,是集热、矿、水为一体,具有洁净、廉价、用途广泛的新能源。开发利用浅层地热能可以降低常规能源消耗,减少环境污染,尤其是大气污染,又可以在发展某些相关产业经济与提高人们生活质量方面发挥作用,具有显著的商业价值。因此,引起了各国对其开发利用的重视。特别是1973年世界能源危机以来,浅层地热能的勘查与开发利用正在迅速向深度和广度发展。
4.地下水热运移数值模拟研究进展
地下水源热泵运行后,回灌井注入含水层的冷热能会在对流和热传导的作用下向抽水井运移,从而对地下水温度场产生影响,因此有必要对地下水热运移过程进行深入研究。数值模拟方法以其高效性、便捷性和灵活性等众多优势,逐渐成为研究这一问题的有效工具。鉴于此,本节对国内外地下水热运移数值模拟研究进展进行回顾,为本专题的后续研究提供基础和参考。
从20世纪70年代末开始,国外提出了许多描述含水层中热量运移的数学模型.Mercer等(1985)、Crawford等(1982)以及Mirza等对含水层储能的一些模拟技术进行了讨论。1985年.P.Heijde和Y.Bachmat等统计了当时已有的21个热运移数学模型,所有这些模型均只考虑对流和热传导作用,忽略了自然对流对热运移的影响,除了两个是三维水流耦合模型外,其余均为一维和二维的。Tsang等(1981)和Sykes等(1982)曾先后利用有限差数值模拟方法,对Auburn大学第二期地下含水层储能野外试验中水和热量运移规律进行了模拟研究,模拟结果与试验观测结果基本吻合。Buscheck等(1983)利用Aubum大学储能试验前两个周期的资料进行了二维数值模拟,并在模拟过程中考虑了自然对流的影响。Rouve等(1988)应用有限元模拟方法对德国Stuttgart大学的人工含水层季节性储能试验进行了二维数值模拟,并对含水层中各填充亚层的渗透性空间组合进行了优化。Molson等(1992)利用加拿大Ontario武装基地潜水含水层储能试验数据,对该试验过程进行了三维有限元模拟,其中考虑了自然对流影响和密度随温度的变化,该模型相对比较完整,但是试验条件比较简单,且连续性方程不尽完善。Forkeli等(1995)利用二维轴对称模型和三维有限元模型对人工含水层储能系统的储能效果进行了模拟研究,并通过对比模拟确定了效果最佳的人工储能系统。Travi等(1996)建立了二维非稳定流模型,通过数值计算给出了一个含水层剖面上温度的变化。Chevalier等(1999)应用随机游离法对多孔介质含水层储能进行了模拟研究,发现区域地下水的流动能够加速所储热能向下游含水层中扩散,从而降低所储热能的回采率。Nagano(2002)通过实验室试验和有限差分数值模拟研究得出,如果储热过程中回灌水的温度较高(>;50℃),含水层中将很可能发生自然对流现象,从而使得利用含水层储能的热回收率将受到较大影响。Chounet等(1999)利用混合有限元法对土壤中水流和热量运移进行模拟,提高了模拟精度,但所用模型是一个剖面的二维模型。
国内对地热数值模拟研究始于20世纪80年代后期,张菊明等(1982)用有限元法模拟了二维地热运移问题,并给出了有限元程序。李竞生等李竞生,王广才 1989.平顶山八矿热水补给来源及条件方式.煤炭科学研究总院西安分院科研报告.对平顶山地温场分别建立了二维和三维温度场数学模型,并采用有限元法求解,但是此模型仅是一个稳定的模型,并没有对水流场的变化规律进行研究。薛禹群等(1987)对上海储能试验建立了三维数学模型,且考虑了热机械弥散,但水流模型是一个稳定模型,用简单的解析表达式代替水流模型,没有考虑水密度随温度的变化和水动力黏滞系数随温度的变化。张菊明(1994)建立了三维地温场数学模型并提出了有限元解法,但没有考虑水流方程。胡柏耿胡柏耿.1995.地热田中的传热传质研究.北京:清华大学博士学位论文.采用二维双孔隙介质模型模拟了地热田中传热和传质过程,并分别模拟了西藏那曲地热田和羊八井地热田的热质运移规律。任理等(1998)用交替方向有限差分法研究了土壤二维水热运移规律。何满潮等(2002)首先研究了地下热水回灌过程中渗透系数变化规律,然后针对单井、对井回灌过程中渗流场的动态变化建立了地热回灌渗流场数学模型,推导了渗透系数恒定与变化不同条件下的单井、对井回灌的理论公式。
国内外专家对于专门针对水源热泵的地下水热运移也进行了一定的模拟研究。Gringarten等(1975)对地下水均匀流动条件下的含水层热能采集进行了理论研究。通过对边界条件的简化和进行适当的条件假设,建立了对井系统的热传递数学模型,并利用该模型对不同给定条件下的热突破事件进行了定量评价,为法国的对井采能系统的合理布局设计提供了有效的指导。为了定量评价目标含水层系统中热量的运移特征,从而指导采能系统的设计,Wiberg应用有限单元法,对单纯的热传导和传导-对流并存两种不同假设条件下,理想含水层系统中地温场的分布特征进行了对比模拟研究。根据美国威斯康星州的供暖和制冷负荷要求,Andrews(1978)应用二维有限元模型,定量评价预测了水源热泵利用对地下温度场的影响。模拟结果表明,与区域地下水处于静止状态的情况相比,当区域地下水以一定的速度流动时,冬灌井周围的温度降幅相对较小,而影响半径有所增加,并且温度扰动带沿水流方向发生一定的偏移。Rahman(1984)通过对含水层条件进行假设,建立了对井回灌系统的模拟模型,并对不同的回灌量、含水层厚度、初始储层温度和井距影响条件分别进行了定量模拟研究。研究结果表明,除回灌量和井对之间的距离外,含水层厚度对热突破的时间影响比较显著;而含水层的储水率和渗透系数对热突破事件的影响并不显著。为了确定开采井群和回灌井群之间的合理布局,Paksoy(2000)应用CONFLOW程序,对含水层采能过程中热锋面的运移特征进行了定量模拟研究。通过限定开采井和回灌井的水位变幅,同时确保不出现热突破,最终确定上述约束条件下开采井群和回灌井群之间的最小距离。Tenma建立了一个理想的对井模型,利用FEHM软件对不同的开采与回灌量、水井滤管长度与位置和运行周期情况进行定量对比模拟。研究结果表明,前两个因素是控制模型温度变化幅度的主要影响因素。在国内,辛长征等(2002)利用美国地质调查局编写的HST3D程序,对一典型双井承压含水层的速度场和温度场进行了全年运行模拟,由于程序的限制,模拟时采用全年固定流量和固定温度的办法。周建伟等(2008)利用基于HST3D的Flowheat程序对武汉市某地下水源热泵系统进行了模拟,并对布井方式和抽灌组合的合理性进行了分析。张昆峰等(1998)模拟了大口径井水源热泵的冬季运行工作情况,结果表明,大口径井中的井水流动为均匀下降。
二、国内研究现状及发展趋势
1.早期热泵的应用与起步阶段(1949~1966年)
相对于世界热泵的发展,我国热泵的研究工作起步约晚20~30年左右。20世纪50年代天津大学热能研究所吕灿仁教授就开展了我国热泵的最早研究,1956年吕教授的《热泵及其在我国应用的前途》一文是我国热泵研究现存的最早文献。20世纪60年代,我国开始在暖通空调中应用发展热泵,并取得了一大批成果。1960年同济大学吴沈钇教授发表了《简介热泵供暖并建议济南市试用热泵供暖》;1963年原华东建筑设计院与上海冷气机厂开始研制热泵式空调器;1965年上海冰箱厂研制成功了我国第一台制热量为3720W的CKT-3A热泵型窗式空调器;1965年天津大学与天津冷气机厂研制成功国内第一台地下水热泵空调机组;1966年天津大学又与铁道部四方车辆研究所共同合作,进行干线客车的空气/空气热泵试验;1965年,由原哈尔滨建筑工程学院徐邦裕教授、吴元炜教授领导的科研小组,根据热泵理论首次提出应用辅助冷凝器作为恒温湿空调机组的二次加热器的新流程,这是世界首创的新流程;重庆建筑大学、天津商学院等单位对地下埋盘管的地源热泵也进行了多年的研究。中国科学院广州能源研究所等单位还多次召开全国性的有关热泵技术发展与应用的专题研讨会。清华大学、天津大学分别与有关企业结成产学研联合体,开发出中国品牌的地源热泵系统,已建成多个示范工程,越来越多的中国用户开始熟悉热泵,并对其应用产生了浓厚的兴趣。
我国早期热泵经历了17年的发展历程,度过一段漫长的起步发展阶段。其特点可归纳为:①对新中国而言,起步较早,起点高,某些研究具有世界先进水平;②由于受当时工业基础薄弱,能源结构与价格的特殊性等因素的影响,热泵空调在我国的应用与发展始终很缓慢;③在学习外国基础上走创新之路,为我国今后热泵研究工作的开展指明了方向。
2.热泵应用与发展的停滞期(1966~1977年)
这一时期正处于“十年动乱”期间,在此期间热泵的应用与发展基本处于停滞状态。该期间没有一篇有关热泵方面的学术论文发表和正式出版过有关热泵的译作和著作等;国内没有举办过一次有关热泵的学术研讨会,也没有派人参加过任何一次国际热泵学术会议,与世隔绝10余年。只有原哈尔滨建筑工程学院徐邦裕、吴元炜领导的科研小组在1966~1969年期间,坚持了LHR20热泵机组的研制收尾工作,于1969年通过技术鉴定,这是在“文革”时期全国唯一的一项热泵科研工作。而后,哈尔滨空调机厂开始小批量生产,首台机组安装在黑龙江省安达市总机修厂精加工车间,现场实测的运行效果完全达到(20±1)℃,(60±10)%的恒温恒湿的要求.这是我国第一例以热泵机组实现的恒温恒湿工程。
3.热泵应用发展的复苏与兴旺期(1978~1999年)
1978~1988年,我国热泵应用与发展进入全面复苏阶段。在此期间,为了充分了解国外热泵发展的现状与进展,大量出版有关著作,国内刊物积极刊登有关热泵的译文,对国外热泵产品进行测试与分析,积极参加国际学术交流。同时,一些国外知名热泵生产厂家开始来中国投资建厂。例如美国开利公司是最早来中国投资的外国公司之一,于1987年率先在上海成立合资企业。
1989~1999年期间,我国热泵又迎来了新的发展历程。在我国应用的热泵形式开始多样化,有空气-空气热泵、有空气-水热泵、水-空气热泵和水-水热泵等。在此期间国内已有国有、民营、独资、合资等不少于300家家用空调器厂家,逐步形成我国热泵空调器的完整工业体系,且水源热泵空调系统在我国得到广泛应用。据统计,到1999年全国约有100个项目,2万台地下水源热泵在运行。20世纪90年代初开始大量生产空气源热泵冷热水机组,90年代中期开发出地下水热泵冷热水机组,90年代末又开始出现污水源热泵系统。土壤耦合热泵的研究已成为国内暖通空调界的热门研究课题。国内的研究方向和内容主要集中在地下埋管换热器,在国外技术的基础上有所创新。
1978~1999年,中国制冷学会第二专业委员会主办过9届“全国余热制冷与热泵技术学术会议”。1988年中国科学院广州能源研究所主办了“热泵在我国应用与发展问题专家研讨会”。自20世纪90年代起,中国建筑学会暖通空调委员会、中国制冷学会在其主办的全国暖通空调制冷学术年会上专门增设“热泵”专题交流。
1988年,中国建筑工业出版社出版了徐邦裕教授等编写的《热泵》教材;机械工业出版社1993年出版了郁永章教授主编的《热泵原理与应用》,1997年出版了蒋能照教授主编的《空调用热泵技术及应用》,1998年出版了郑祖义博士著的《热泵技术在空调中的应用》;1994年华中理工大学出版社出版了郑祖义著《热泵空调系统的设计与创新》。1989~1999年,正式发表有关热泵方面论文270篇,热泵专利总数161项,而发明专利为77项。这些教材、著作、译著和论文的出版,专利技术的应用,推动了热泵技术在我国的普及与推广。
4.热泵技术的飞速发展时期
进入21世纪后,由于城市化进程的加快,人均GDP的增长,拉动了中国空调市场的发展,促进了热泵在我国的应用,应用范围越来越广泛,热泵的发展十分迅速,热泵技术的研究不断创新。热泵的应用、研究空前活跃,硕果累累。2000~2003年,专利总数287项,是1989~1999年专利平均数的4.9倍。2000~2003年间发明专利共119项,是1989~1999年发明专利平均数的4.25倍。2000~2003年,热泵文献数量剧增,如2003年文献数是1999年文献数的5倍。全国各省市几乎都有应用热泵技术的工程实例。热泵技术研究更加活跃,创新性成果累累。在短短的几年中有3项世界领先的创新性成果问世,包括:同井回灌热泵系统,土壤蓄冷与土壤耦合热泵集成系统,供寒冷地区应用的双级耦合热泵系统。
5.地源热泵的应用与研究
我国地源热泵研究起步于20世纪80年代,首先是一些高校和科研机构对地源热泵的相关技术进行了专题研究。如北京工业大学对深层地热水进行了研究,并设计了若干垂直埋管和水平埋管的土壤源热泵试验系统;哈尔滨工业大学的水环热泵空调系统应用基础的研究与评价,土壤蓄冷与土壤耦合热泵集成系统的数值模拟与实验研究,土壤源热泵系统中地埋管的热渗耦合理论与关键技术研究;湖南大学建设了水平埋管土壤源热泵系统等。另外,青岛建筑工程学院、山东建筑工程学院、上海同济大学、天津商学院、重庆建筑大学等大学也进行了该方面的研究。近年来国内数所高等院校开展了土壤源热泵系统和水源热泵系统的试验研究,并取得了一些重要成果。
目前,我国浅层地热能的开发利用研究发展很快,经过近二十几年的研究和开发,热泵技术在我国已取得了很大进步,尤其是地源热泵技术发展迅速。已经初步建立了各类地下水源热泵系统的水源井施工技术和技术要求,井群设计和计算方法、水质评价和处理方法及环境评价方法等。
截止到2008年10月底,我国浅层地能应用面积超过1×108m2(《地源热泵》杂志2009年5月刊)。已遍及北京、上海、天津、河北、河南、山西、辽宁、四川、湖南、西藏、新疆等地。应用的建筑类型包括宾馆、住宅、商场、写字楼、学校、体育场(馆)、医院、展览馆、军队营房、别墅和厂房等,应用前景广阔。
6.浅层地热能的开发利用与发展趋势
浅层地热能的开发利用涉及城市能源结构、环境保护和提高人民生活质量的重大课题。特别是浅层地下水源热泵和土壤源热泵的可再生能量采集系统是解决上述重大课题的关键,其能量采集基本不受使用地域和四季气候的影响。浅层地热能作为建筑物的冷热源初始采集更具有推广价值。
浅层地热能的开发利用不仅受到学术界和企业界的关注,政府也更加重视。《中华人民共和国可再生能源法》明确指出:国家将可再生能源开发利用的科学技术研究和产业化发展列为科技发展与高技术发展的优先领域。国家财政支持可再生能源的资源调查、评价和相关信息系统建设。该法的实施为浅层地热能的调查、评价和开发提供了强有力的依据和保障。国土资源部、中国地质调查局等部门多次召开浅层地热能勘查开发经验交流会、技术研讨会,并编制出台浅层地热能勘查评价规范,做到了浅层地热能勘查开发有标准可依。近年来,随着国家加大建设“资源节约型、环境友好型”社会的力度,实现节能减排目标,国家从中央财政安排专项资金用于支持可再生能源建筑应用示范和推广,财政部、建设部已批准下达3批包括浅层地热能利用的可再生能源建筑应用示范推广项目。各地也相继出台支持开发利用浅层地热能项目。如2006年5月31日,由北京市发改委联合市水利局、国土局等9个委办局联合发文对采用地下水源热泵系统实现供暖和制冷项目按每平方米35元的标准进行补贴,对采用地源热泵系统实现供暖和制冷项目按每平方米50元的标准进行补贴;沈阳市发布的《关于地源热泵系统建设和应用工作的实施意见》中要求在沈阳市三环内的455km2核心区范围内,对符合应用地下水热泵技术的409km2范围内的建筑物,原则上都要采用地下水源热泵技术规划研究。
进入21世纪,伴随中国经济的迅速发展,人们对生活品质和舒适性要求的不断提高,城市能源结构的改变,建筑市场的巨大,为浅层地热能开发利用技术的推广创造了前所未有的机遇。国内在热泵理论研究、试验研究、产品开发和工程项目的应用诸方面都取得了可喜的成果。
目前,我国已经建立了比较完善的开发利用浅层地热能的工程技术、机械设备、监测和控制系统,但回灌技术中的水质控制和回灌对储层及用水管的影响评价,堵塞井的处理技术,对井群采灌系统温度场、化学场和压力场的模拟计算方法,参数采集方法等尚在研究之中。

郑克棪

(中国能源学会地热专业委员会)

摘要:在世界地热能直接利用中,应用地热热泵开发浅层地热能已在近些年内独占鳌头,其装机容量和利用能量均以每年超过20%的速度飞速增长,因为它适应了高效节能和环境保护的需要,而且经济可行、普遍适用。由此分析预测地热热泵也必将在我国具有远大的开发前景。

1 前言

2006年1月1日起我国《可再生能源法》开始实施,作为可再生能源之一的地热能可以而且应当做些什么呢?伴随着20世纪70年代世界石油危机而掀起的地热新能源开发,在30多年的发展历程中又发现了新的亮点,那就是利用浅层地热能的地热(地源)热泵开发技术。近10余年来的这一股世界潮流给我们指引出一条光明大道,地热(地源)热泵史无前例的高效率和高环保效益,也必将在我国有巨大的发展前景。地热工作者应该获得先知,掌握市场,为地热(地源)热泵系统的大发展做好准备,为中国地热在世界上的贡献继续努力。

2 地热热泵在世界上的大发展

五年一次的世界地热大会总是给我们带来世界地热现状的最新消息。在1995年意大利的世界地热大会上,有几篇文章尝试着总结了井下换热器、热泵和地下储热的技术状况和发展水平。然而,2000年日本和2005年土耳其的世界地热大会上,这一技术和应用就出现了突飞猛进的新局面。

在2000年,地热热泵在世界26个国家中共安装了50万台装置,总装机5275兆瓦热量(MWt),是1995年的2.84倍,平均每年增长23.3%,占世界地热直接利用总装机容量的34.8%,首次超过了地热供暖的份额(21.5%)。

从地热热泵利用的能量来说,2000年达6465GWh,5年内增长了59.2%,平均每年增长9.7%,它在地热直接利用的能量中占12.2%,尚未超过地热供暖的份额(22.5%)。

至2005年,世界上33个国家已安装了130万台地热热泵装置,总装机15723MWt,是2000年的2.98倍,每年增长24.4%,占世界地热直接利用总装机容量的56.5%,已是地热供暖份额(14.9%)的3.8倍。从地热热泵利用的能量来说,2005年达到24076GWh,是2000年的3.72倍,每年增长30%。它在地热直接利用的能量中已占到最大份额为33.2%,远远超过了地热供暖的份额(20.2%)。

地热热泵和地热供暖的统计详见表1和图1。其规律为:

表1 世界地源热泵和地热供暖十年的发展对比

注:占百分比指占世界地热直接利用总量的百分比。

图1 地源热泵和地热供暖的装机与能量对比

(1)地热热泵和地热供暖的装机容量与利用能量都是逐年增长的,只是地热热泵的增长速度更大,因此后来超过了地热供暖。

(2)地热热泵的增长速度,在1995~2000年间虽已高于地热供暖,但仍显相对缓慢,而在2000~2005年间其装机容量和利用能量均有高速的增长。地热供暖在该两段时期的增长速度相当。

(3)地热热泵单位装机容量的利用能量小,而地热供暖单位装机容量的利用能量大。在图1中可看出前者的二组图表差别不大,而后者的二组图表差别显著。

3 地热热泵的优势所在

地热热泵能成为世界上发展最快的可再生能源之一,其原因就在于它的高效率和无污染,而且经济可行、普遍适用。

(1)热泵机组的高效率在供暖模式上用运行系数COP来表示,它是输出能量与输入能量(电能)之比,目前热泵机组的COP一般都能达到3~4。这等于说,热泵的效率是300%~400%,而我们知道,空调机(空气-空气热泵)的效率是200%,电的效率是100%,燃油的效率是90%,燃煤的效率是55%,因此热泵的效率是最高的。热泵的效率为什么这么高?因为它消耗电能之外,另从低温的地下水或土壤中吸取了大量的能量。

(2)专家称,热泵作为供热装量可以减少全球6%以上的二氧化碳排放量,它是目前市场上可获得的减少二氧化碳排放量最大的单项技术之一。虽然热泵本身不排放二氧化碳,但电厂发电时的二氧化碳排放有1/3至1/4要算在热泵的账上,但没有其它污染产生。

(3)地热热泵利用浅层地温的能源只需要钻50~100m深的钻孔,有的地方或许需要200m深,但比起地热井要钻1000~3000m来就经济、简易得多。

(4)浅层地热能的资源条件到处具备,不像地热井那样受到地域局限,它基本上是普遍适用于世界各地,哪怕是寒带也无妨。

4 地热热泵在我国的发展前景

当前世界上地热热泵发展最快的主要是美国和西欧、北欧等国家。中国虽然是发展中国家,但我们现在已经具备了地热热泵发展所需的各项条件:

(1)现在我国经济实力强大,电力供应基本充足,虽然一些地区电力紧张,但电力建设都在规划和实施之中,每年都有发展。相对20世纪70年代开发地热之初,天津大学教授就提出了热泵技术,但当初电力供应紧张,所以只能免谈了。

(2)我国有相当丰富的浅层地热能资源,国土地理位置主要在温带,无论浅层地下水或土壤中的温度,利用100~200m深度就足够我们消耗。不像地处寒带的挪威,为了利用热泵,将取热的钻孔钻到了400m深度。

(3)社会发展和人民生活水平提高之后,冬季供暖和夏季制冷的需求日益强烈,像过去黄河以南有不供暖的“规定”早就不成为约束了。为了办公和生活条件的舒适,愿意将资金投在这方面。

(4)我们已经掌握了地热热泵的各项相关技术,虽然热泵中的关键部件高压压缩机目前主要依靠进口,但我国已有了国产热泵工厂,有大、中、小型产品,能设计安装,也有了国家标准GB50366-2005,也规定了应由具有勘察资质的专业队伍来承担工程勘察。这些都是有利于规范市场、有利于地热热泵产业发展的技术基础。

(5)适应于我国建设节约型社会和提倡环境保护的宗旨,地热热泵在世界上的公誉也必将在我国得到认可,得到大发展。

地热热泵在我国的发展现状,可以看一下北京的例子:北京地热勘查和开发进行了35年,地热供暖的面积现在共40万m2;但地热热泵在北京发展不足5年,现热泵供暖面积已超过400万m2

5 结语

利用地热热泵开发浅层地热能的技术和资源条件已经具备,热泵的最高效率和高度环保更赢得世界的青睐,因此,热泵技术和产业正在世界上得到高速发展。我国也已具备相应的发展条件,发展前景非常看好。

参考文献

D.H.Freeston.1995.Direct uses of geothermal energy 1995.Proceedings of the World Geothermal Congress 1995,Vol.1,15~25

John W.Lund and Derek H.Freeston.2000.World⁃wide direct uses of geothermal energy 2000.Proceedings World Geothermal Congress 2000,1~21

John W.Lund,Derek H.Freeston and Tonya L.Boyd.2005.World⁃wide direct uses of geothermal energy 2005.Proceedings World Geothermal Congress 2005,No.0007,1~20

R.Curtis,J.Lund,B.Sanner,L.Rybach,G.Hellstrom.2005.Ground source heat pumps ⁃geothermal energy for anyone,anywhere:current worldwide activity.Proceedings World Geothermal Congress 2005,No.1437,1~9




地热能相关新闻
通过建立大规模现场热响应试验场,实施了浅层地热能资源开发利用的适宜性分区,并对全市浅层地热能资源地埋管地源热泵系统的可利用资源量进行了评估。自主研发的地层温度精细测量、数字采集传输系统也在此期间推出。评审组评价,天津浅层地热能调查评价工作形成的技术方案总体达到国际先进水平,对于推动我国城市...

河南省浅层地热能开发利用展望
2006年建设部、财政部联合发布了《建设部、财政部关于推进可再生能源在建筑中应用的实施意见》(建科[2006]213号),“意见”中明确规定了国家重点支持浅层地热能开发利用的示范工程、技术集成及标准制定。国家从中央财政安排专项资金用于支持可再生能源建筑应用示范和推广,财政部、建设部已批准下达3批包括浅层地热能利用...

地热能的利用与分布情况
利用之四:供暖。这个就简单了,或许不用小编解释大家就知道了吧。地热供暖是仅次于发电的利用方式,其原理与我们现在所用的地暖并无不同!只是一个是我们自己加热水,而另一个是从地下直接抽取热水。一个消耗燃料,一个消耗能源。现在就全世界来说,对地热供暖开发的最好的就是冰岛了,所以冰岛上的环境...

对地热能的研发如何利用?
1950年意大利、美国、新西兰等开始进行大规模的地热发电。日本从1925年开始用地热蒸汽发电,1966年以后共建立了9座地热发电站,目前发电能力已达21.5万千瓦。1983年美国、西德、日本在美国新墨西哥州进行联合开发,成功地发现了一块规模宏大的存积层,获得了3.5万千瓦的热能。我国也在西藏羊八井兴建了7000...

三种地热来源
目前可利用的地热资源主要包括:通过热泵技术开采利用的浅层地热能、天然出露的温泉、通过人工钻井直接开采利用的地热流体以及干热岩体中的地热资源。我国地热资源种类繁多,考虑地质构造特征、热流体传输方式、温度范围以及开发利用方式等因素。● 地热是如何形成的?关于地热的来源,有多种假说。一般认为,地热...

国内外地热能的广泛利用有哪些?
在国际上,美国和欧洲等发达国家正专注于从岩石中开采热能,尤其是干热岩。干热岩储量巨大,所储存的热能远超已探明的地热资源。这些国家通过将水注入地下数公里深处,利用岩石层的高温加热水源,再将热水泵回地面用于发电。法国和荷兰等国的专家们已在阿尔萨斯地区成功利用干热岩发电,为地热能利用树立了新的...

地热能的利用原理
运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。地热能是可再生资源。人类很早以前就开始利用地热能,例如利用温泉沐浴、医疗,利用地下热水取暖、建造农作物温室、水产养殖及烘干谷物等。但真正认识地热资源并进行较大规模的开发利用却是始于20世纪中叶。 地热能是来自地球...

浅层地热能开发利用是否需要资源开发费
到2015年,我国利用的浅层地热能资源量将达到4.26×1011kWh,相当于5269万吨标准煤(占我国浅层地热能可利用资源总量的14.8%)。(三)地源热泵技术地源热泵技术的进步是带动浅层地热能开发利用的关键因素,实践证明,利用地源热泵技术开发浅层地热能是实现节能减排十分有效的途径。1912年瑞士人首先提出了地源热泵技术,1946年...

浙江省可再生能源开发利用促进条例
第十二条 省建设主管部门根据本省气候特征和工程建设标准依法制定太阳能、浅层地热能、空气能等可再生能源建筑利用的地方标准。省标准化主管部门会同省有关部门依法制定除前款规定以外的可再生能源开发利用的地方标准。第十三条 县级以上人民政府水行政主管部门依法履行水能资源开发利用的指导和监督管理职责。...

来自地球深处的力量——地热能是如何利用的?
地热能是一种洁净的可再生能源。它具有热流密度大、容易收集和输送、参数稳定(流量、温度)、使用方便等优点,已成为人们争相开发利用的热点。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。近年来,随着国民的经济迅速发展和人民生活水平的提高,采暖、空调、生活用热的...

木里藏族自治县13489303994: 爱家的懒洋洋:浅层地热能在国外的利用情况是怎么样的?
傅吴二乙: “地源热泵”的概念,最早于1912年由瑞士专家提出.1946年美国在俄勒冈州的波兰特市中心区建成第一个地源热泵项目.大范围使用是起源于石油危机之后,进入20世纪90年代后,很多应用地源热泵的国家都能保持每年10%的应用增长率.

木里藏族自治县13489303994: 研究内容与研究方法 -
傅吴二乙: 一、研究过程及研究范围 河南省省辖18个城市广泛分布第四纪松散地层,其浅层土体以及赋存的浅层地下水中低品位的地热能资源丰富.为合理开发利用城市浅层地热能资源,河南省地质调查院于2006年向河南省国土资源厅立项申请开展“河...

木里藏族自治县13489303994: 地热的利用现状和形成原因! -
傅吴二乙: 地热的利用是不消耗能源的资源有效的再利用,也是国家推广的方向.其技术在欧洲和美国运用较广泛成熟,主要是指地下水和地下土壤温差的利用. 在国内适用范畴主要是中小型宾馆,写字楼以及别墅和花园洋房的底层用户. 利用地热资源的热泵热水技术运用在家庭中,地暖,整体热水供应,夏季空调利用综合初装设计费用和运行使用费用较其它方式要节能得多.所以有很好的市场前景.

木里藏族自治县13489303994: 如何利用地热能来发电? -
傅吴二乙: 地热能是来自地球深处的可再生性热能,它起于地球的熔融岩浆和放射性物质的衰变.地下水的的深处循环和来自极深处的岩浆侵入到地壳后,把热量从地下深处带至近表层.其储量比目前人们所利用能量的总量多很多,大部分集中分布在构造...

木里藏族自治县13489303994: 什么是浅层地热供热 -
傅吴二乙: 浅层地热能 ,又名浅层地温能,是指地表以下一定深度范围内(一般为恒温带至 200 m 埋深),温度低于 25℃,在当前技术经济条件下具备开发利用价值的地球内部的热能资源.浅层地热能是地热资源的一部份,也是一种特殊的矿产资源.其能量主要来源于太阳辐射与地球梯度增温.浅层地热能通过热泵技术进行采集利用后,可以为建筑物供暖,较常规供暖技术节能50%到60%,运行费用降低约30%到40%.浅层地热能分布广,储量大,再生迅速,利用价值大.目前中国浅层地热能主要通过水源热泵和地源热备技术采集.不但可以满足供暖需求,同时也直接降低了排放的污染量,有利于保护环境.

木里藏族自治县13489303994: 浅层地热能的开发是怎么实现的?
傅吴二乙: 与地热发电相比,地热能的直接利用有三大优点:一是热能利用效率高达50%~70%,比传统地热发电5%~20的热能利用效率高出很多;二是开发时间短得多,且投资也远比地热发电少;三是地热直接利用,既可利用高温地热资源也可利用中低温地热资源,因之应用范围远比地热发电广泛.当然,地热能直接利用也受到热水分布区域的限制,因为地热蒸汽与热水难以远距离输送.

木里藏族自治县13489303994: 阅读下面文章,完成后面的题.(12分)“绿色”浅层地温能①你听说过“浅层地温能”吗?它是蕴藏在地表以下 -
傅吴二乙: 小题1:浅层地温能是一种清洁无污染的能源;资源量丰富;浅层地温能资源无处不在就近利用成本低;可循环利用(4分) 小题2:这句话运用了列数字的说明方法,具体准确的说明了热泵消耗的能量少提供的能量多.(3分) 小题3:不能删去,...

木里藏族自治县13489303994: 请详细描述下地球内部的能源和我国的开发情况.
傅吴二乙: 矿产还是属于地壳表面的,地球内部的能源主要是地热,我国西藏羊八井等地有很多利用地热能的,但这种地热能也是喷发出来的热气,属于浅层利用,至于深层地热,现在还没有这种技术.

木里藏族自治县13489303994: 地热能的未来趋势 -
傅吴二乙: 如果往地下挖6英尺,你会发现在美国任意地区的地下温度均保持在45至75华氏度之间.这为地热能的利用提供了得天独厚的条件.通过热力泵为家庭供暖就是对地热能的一种典型利用.尽管成本偏高,但其简单、可靠、无噪音且低污染等诸多...

木里藏族自治县13489303994: 地热能的简介 -
傅吴二乙: 人类很早以前就开始利用地热能,例如利用温泉沐浴、医疗,利用地下热水取暖、建造农作物温室、水产养殖及烘干谷物等.但真正认识地热资源并进行较大规模的开发利用却是始于20世纪中叶.地热能大部分是来自地球深处的可再生性热能,...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网