天然气成因类型判别

作者&投稿:村泊 (若有异议请与网页底部的电邮联系)
 天然气成因类型~

“九五”以来塔里木盆地天然气的储量上升很快,天然气探明储量占“九五”探明油气储量的72%,使人们认识到塔里木盆地是一个富气的盆地,丰富的天然气资源与塔里木盆地3套高丰度的气源岩有关:①高—过成熟的寒武系气源岩;②中上奥陶统偏腐殖型的泥灰岩烃涯岩,该套烃源岩的生物构成主要为宏观藻类(褐藻),其次为浮游藻类、隐孢子等,有机质类型以Ⅱ1、Ⅲ型为主,从有机相角度看相当于Jones的C相,既能生油又能生气;③以产气为主的侏罗系烃源岩。
塔里木盆地天然气不同成因类型天然气的差别可反映在碳同位素及轻烃等地球化学特征上。海相气C1—C4碳同位素明显轻于陆相气(图2—3—1),这种差别尤其体现在乙烷的δ13C上,海相气乙烷δ13C值在—28‰~—44‰,主峰为—30‰~—36‰,陆相气乙烷δ13C值在—16‰~—28‰,主峰在—20‰~—26‰。两类气的划分还可以在δ13C2—δ13C1与δ13C1两项指标上体现出来(图2—3—2)。
在轻烃地球化学特征上,煤成气以富甲基环己烷为特点,海相偏腐殖型次之,而海相腐泥型成熟和高过成熟气则以贫甲基环己烷为特点。
考虑到无机气,塔里木盆地不同类型天然气特征总结如表2—3—1所示。

表2—3—1 塔里木盆地不同类型天然气地球化学特征

(据赵孟军,1998)

图2—3—1 塔里木盆地煤成气、油型气碳同位素分布对比图(据赵孟军等,1998)

对塔里木盆地不同构造带油气藏天然气来源的综合判识建立在直接对比和间接推断的基础上,前者主要是通过对岩石热模拟获得轻烃及其同位素与天然气中的轻烃及其同位素做直接对比,后者主要是指根据天然气的成因类型推断其源岩母质类型,据天然气成熟度推断其源岩成熟度,从而达到气源判识的结果。由于不同气源岩的空间上叠置及原油裂解气的生成,不同成因类型的天然气混合是不可避免的,只是主次不同。对塔里木盆地天然气的类型总结如表2—3—2所示。
根据InC1/C2—lnC2/C3,塔中东部主垒带天然气属原油裂解气(图2—3—3),其余为干酪根裂解气。

图2—3—2 塔里木盆地天然气成因分类(据赵孟军等,1998)

A1—海相成熟腐泥型气,包括TZ4、TZ1、TZ6、东河塘、YM2;A2—海相过成熟腐泥型气,包括轮南地区与玛扎塔格;C—陆相烃成气,库车和柯克亚;B—海相偏腐殖型气,塔中北斜坡;混合气(古生界与石炭系混合,群库恰克)

表2—3—2 塔里木盆地主要油气藏(区)中的天然气来源判识

(据赵孟军等,1998)

图2—3—3 塔里木盆地原油裂解气的判识(据赵孟军等,1998)

(一)无机与有机天然气类型划分
天然气成因类型的判识主要依赖于天然气的组分和碳、氢同位素组成,并以天然气伴生的轻质油、凝析油、原油的轻烃地球化学特征以及稀有气体同位素组成为辅。腰英台地区的甲烷碳同位素明显偏重,其δ13C1>30‰。据戴金星(1992),除高成熟和过成熟的煤型气外,δ13C1>-30%。的均为无机成因的甲烷,因此利用CH4(%)与δ13C1(‰)图可知(图3-33),腰英台构造带主要分布煤型气区内,ChaS1井与YS1井(3466m)登娄库组可能为无机成因甲烷气或者少量的无机气混入的有机气,另外ChaSl井区的个别样品介于无机气与有机气之间,从而表明此研究区有深部的无机气混入,达尔罕构造带以及双坨子地区主要分布有机成因煤成气,煤型气与油型气需要进一步的判识(张枝焕、童亨茂等,2008)。

图3-33 无机与有机天然气类型划分

1—YS1(K1d);2—YS1(K1yc);3—YP1(K1yc);4—YP7(K1yc);5—YS2(K1yc);6—DB11(K1yc);7—D2(K1yc);8—DB33井区;9—ChaS1井区;10—双—坨子地区
(二)有机烷烃气体进一步鉴别
在有机成因的烷烃气中,生物气和裂解气均具有高甲烷含量、低重烃含量的特点,它们的区别之一是生物气甲烷碳同位素较低,而裂解气的甲烷碳同位素值偏重,根据生物气的一个良好鉴别标志δ13C1<-55%来看,长岭断陷天然气均属于裂解气。从δ13C1—1gC1/C2+3关系图来看(图3-34),腰英台构造带与ChaS1井区的天然气均属于煤型气,ChaS1井个别样品明显有无机气的混入,为煤成气与无机气的混合气。双坨子地区与腰英台地区的天然气组成特征明显存在差别,主要为原油伴生气以及凝析油与原油伴生气的混合气,由此表明两研究区的天然气的气源是不一致的,腰英台与达尔罕构造带的天然气主要为腐殖型干酪根裂解气,而非原油裂解气(张枝焕、童亨茂等,2008)。
苏联学者Гуцадо(1981)从CH4与CO2共生体系碳同位素热平衡原理出发,以世界上已有CH4与CO2共生体系中测得的δ13C.和δ13Cco2为依据,将自然界不同成因类型的CH4与CO2共生体系划分为三个区,即Ⅰ区为无机成因区,Ⅱ区为生物化学气区,Ⅲ区为有机质热裂解气区。根据图3-35不难看出,研究区腰英台构造带主要分布有机质热裂解气,YS1井与YS2井营城组天然气个别样品分布在无机气的成因区域,大部分样品介于有机质热裂解气区与无机成因气区,达尔罕构造带的天然气主要为有机质裂解气,因此腰英台构造区块的天然气极有可能存在混源特征,可能有无机气的混入,其混源单元还需要进一步的鉴别。

图3-34 天然气δ13C1—lg(C2+(C3)关系图

1—ChaS1井区;2—双坨子地区;3—YS1(K1yc);4—YS1(K1d);5—YP1(K1yc);6—YP1(K1yc);7—YS2(K1yc);8—DB11(K1yc);9—DB33井区

图3-35 CH4与CO2共生体系碳同位素分布图

1—YS1(K1d);2—YS1(K1yc);3—YP1(K1yc);4—YP7(K1yc);5—YS2(K1yc);6—DB11(K1yc);7—D2(K1yc);8—DB33井区
(三)无机成因甲烷气及识别标志
自然界烃类的大规模形成是有机-无机物质相互作用的结果,而现今油气勘探都是在有机烃源发育的盆地中进行,有机和无机烷烃气混合成藏使无机烷烃气不如非烃气易于识别。尽管如此,目前在许多裂谷盆地中发现了一系列可能的无机成因天然气的聚集,说明无机成因油气仍有一定的发展前景。
到目前为止,对无机成因烃类气体的判断主要依据有烃类气体的组分、碳同位素、烷烃碳同位素系列、与烃类气体伴生的非烃气体、稀有气体的含量及同位素以及地质背景综合分析等方法。松辽盆地有无机成因CH4的一些重要判别依据:
1.该区与无机CO2气藏等伴生的CH4气藏,有特高甲烷碳同位素及负碳同位素系列
在松辽盆地采送的与无机CO2气藏等伴生的甲烷碳同位素分析样品,碳同位素值出现了大量的δ13C1值大于-30‰,其中还有大量大于-20‰的样品,并出现了大量负碳同位素系列样品,且上述两种特征还同时出现在同一气田(藏),显示了无机成因烃气的存在。
碳同位素是判识无机成因天然气最直接的证据。我国许多地区如云南腾冲县澡塘河、四川甘孜县拖坝、吉林长白山天池、内蒙古克什克腾旗热水镇以及国外许多地区如新西兰地热区、东太平洋热液喷出口、俄罗斯希比尼地块岩浆岩、美国黄石公园等都发现了无机CH4。这些地区的甲烷碳同位素虽然变化较大,但一般都大于30‰。
许多学者亦提出了鉴定无机成因CH4的下限值,有的为大于-20‰,有的为-30‰。但必须指出的是不论哪一个值都不是划分无机甲烷的绝对值,因为某些高(过)成熟的煤型CH4也有显示重碳同位素特征的特点,因此在确定其成因时还需综合考虑其他资料,如烷烃气碳同位素系列、地质构造背景等。其中碳同位素系列是识别有机、无机烷烃气最有效的手段之一。
有机成因的天然气主要源于沉积物中分散有机质的分解。在生烃母质干酪根热降解生成烷烃气的过程中,由于12C—12C键的键能低于12C—13C键,因此生物成因天然气中CH4及其同系物的碳同位素组成具有随碳数的增大而变重的分布特征,即δ13C1<δ13C2<δ13C3<δ13C4正碳同位素系列。这种分布特征几乎存在于所有有机成因的天然气藏,并被有机质热解成烃的模拟实验和理论推导所证实。而对于无机成因的烷烃气来说,重烃气含量很少,而且主要是由甲烷通过放电作用聚合形成的。在由CH4聚合形成高分子烃类或CO加氢合成烃类的过程中,由于12C—13C键的键能低于12C—12C键,使12C随分子量的增加而逐渐富集,从而形成甲烷同系物的碳同位素组成与有机成因的同位素系列正好相反,即形成δ13C1>δ13C2>δ13C3负碳同位素系列。如前面提到的俄罗斯希比尼地块与岩浆岩有关的天然气中δ13C1为3.2‰,δ13C2为9.1‰,δ13C3为16.2‰;美国黄石公园泥火山气的δ13C1为21.5‰,δ13C2为26.5‰。
徐家围子断陷在昌德、汪家屯、肇州以及朝阳沟等地区及腰英台气田均发现了甲烷碳同位素异常和负碳同位素系列,表明该区有无机烃类气体存在。汪家屯地区W a903井甲烷碳同位素最重达12.22‰,而乙烷的碳同位素为22.99‰;昌德地区表现的最为明显,FaS1、FaS2等井多个气样显示负碳同位素系列,且甲烷碳同位素偏重。从这些气样组分来看,干燥系数 一般都在0.98以上,显得很干,也与无机成因烷烃气的特征相似。
此外,也有学者提出负碳同位素系列并不是判断无机成因烃类气体最可靠的标志,由两种不同成因天然气混合,或由天然气的扩散引起同位素分馏均可造成这种现象的出现。以往的研究认为混合作用形成甲烷至丁烷碳同位素的完全反序排列可能性不大,但最近的同位素数值模拟研究结果表明,两种碳同位素正序排列的天然气,混合后可以得到碳同位素完全反序排列的天然气,但要求混合的两个端元的天然气必须具有不同的成因或来源,或它们是明显不同演化阶段的产物。从徐家围子地区的地质条件和同位素特征来看,很难用两种有机成因的气混合加以解释,因为要得到FaS1、FaS2那样重的甲烷负碳同位素系列,要求具有有机成因天然气甲、乙、丙碳同位素为15‰,-14‰,13‰相当的天然气存在,而这种天然气无法与有机质演化的任一阶段相对应,在徐家围子地区也未发现具这种特征的天然气。因此,混合作用不能合理解释该区存在的负碳同位素系列。
2.在该区火山岩的原生流体包裹体中发现CH4
地球深部流体的性质和成分是当前国内外学术界争论的热点课题。火山喷发物中含有大量的非烃气体、少量烃类气体、稀有气体以及沿一些深大断裂带及地震期前后有烃类气体、CO2和稀有气体释放已是公认的事实。近年来对火山岩及其地幔岩流体包裹体的研究进一步揭示其流体相主要为H2O、CO2、CH4、N2、H2、H2S及一些稀有气体。地幔物质及其所含流体在横向和纵向上分布也是极不均匀的,如河北大麻坪尖晶石二辉橄榄岩幔源岩气体包裹体中还原性气体含量高达68.0%~93.4%,而山东栖霞大方山二辉橄榄岩样品中还原性气体为8.5%~39.3%。有学者研究了我国华北地区地幔岩的分布,认为地球深部由上到下依次为尖晶石二辉橄榄岩、尖晶石-石榴石二辉橄榄岩和石榴石二辉橄榄岩,分别代表岩石圈地幔和软流圈地幔。其中石榴石二辉橄榄岩中的H2和CH4的含量最高,而尖晶石二辉橄榄岩含H2和CH4相对较低,因而认为地球深部不同圈层可能孕育有不同性质和类型的天然气,由浅至深有H2O→CO2→CH4、H2富集的趋势,其中莫霍面附近可能是CO2的聚集带,岩石圈与软流圈界面附近可能是烃气的富集带,而H2可能有更深的来源。
在该区非气层段火山岩中采集的火山岩流体包裹体,普遍有较高含量的无机烃气,证实无机成因烃类气体对该区气藏的贡献不容忽视。从徐家围子地区岩浆火山岩流体包裹体气液相成分来看,岩浆成分由基性变为酸性时,CO2有从少变多的趋势,CH4的变化趋势正好相反,因此上述研究成果及推断可能是正确的。在长岭达尔罕及腰南构造,在DB11 井的4017~4120m井段的基性岩中发现大量含CH4的气液相包裹体,其中CH4的最高含量可达到31.9%,该层测试产纯CH4,而在相邻的DS2井3670~3780m的酸性流纹岩中,产出以CO2为主的气藏,在该层中发育大量含CO2的气液相包裹本。
3.在该区发现大量示指深部低氧逸度环境的伴生气体
在松辽盆地,已发现部分高含H2及CO、H2S气的气藏,反映该区地壳深部存在低氧逸度环境,有利于甲烷的生成。无机成因气中低氧逸度组分往往构成共生组合,如DB11井营城组玄武岩段,H2含量达6%,H2S含量达(30~50)×10-6,与CH4共生。其各项同位素指标均反映这些组分源自无机成因,证实深部存在低氧逸度的大地构造环境。
4.从地质背景综合分析方法证实应当存在无机成因甲烷
一般认为,某些高(过)成熟的煤型甲烷也有显示重碳同位素特征的特点,并经不同成因天然气混合,或由天然气的扩散引起同位素分馏可造成负碳同位素系列。因此,在一些不含煤系的地区,如部分烃类气藏的δ13C1出现明显偏重,且出现负碳同位素系列,但周缘未发现明显的煤系烃源岩,可以确定存在较大规模的无机甲烷供给。
无机CO2与甲烷的共生,在各类有机烃类成藏条件差别不大的情况下,在局部地区出现特高、特大的气藏,或在有机烃类气体供给很少的区带,在圈闭中发现大量甲烷,揭示存在无机成因甲烷的供给。
以腰英台—达尔罕断凸带为例,该带已钻达基岩顶面的D2、DBIl井揭示,经二维、三维地震资料标定,该区周邻不存在煤系源岩,其它方向有机烃源的运移供给路线也很长。但在腰英台深层气田,发现富含CO2(含量15%~24%),以CH4为主(76%~85%)的气藏,也存在甲烷重碳同位素和碳同位素反向序列。在YS1、YS101、YS102、ChaS1、ChaS1-1、ChaS1-2、ChaS1-3井揭示大型腰英台气田,探明天然气地质储量达(600~700)×108m3的情况下,周围的ChaS2、D2、YN1井却仅发现了CO2气,未发现烃类聚集。这些表明腰英台深层气田有天然成因甲烷的混人。
由于岩石圈地幔及地壳深处广泛存在C、H、O、N等元素,无机成因天然气的主要组成是CO2,其次是CH4及N2等,无机成因气藏也是以CO2为主,含部分CH4、H2、N2、CO2等组分。在无机成因的甲烷气苗中,甲烷含量一般在5%~30%,但即使是这种较低含量,无机成因甲烷供给量也远大于有机成因甲烷供给量。1979年Welham等指出,东太平洋北纬21°处中脊喷出的热液(400℃)中,含氢气、甲烷的氦,δ13C1值为17.6‰~-15‰,R/Ra约为8,说明这些气体是幔源的。该处喷出的H2的体积浓度为10%,每年喷出H2和CH4分别为12×108m3和1.6×108m3,如果以此喷出速度,即使仅按照与火山热事件的地质历史100万年来计算,该处喷出的H2和CH4即可达到1200×1012m3、160×1012m3,也远远大于有机物的生烃量。由此也可见,CO2的供给量是何等惊人。
同时在沉积盖层的深埋压实条件下,CO2易于与地壳中碳酸盐岩、碱性岩类发生反应,并大量溶解于水中,而产生大量的损耗。而在地壳沉积盖层的温度、压力条件下,CH4则有相对的化学稳定性,在CO2逃逸和散失量很大的条件下,无机成因CH4常可以形成相对富集,甚至形成无机成因甲烷为主的天然气藏。
(四)煤型气与油型气的鉴别
确认天然气属于煤型气还是属于油型气,对于追溯、对比烃源岩起着重要作用,目前最为常用的参数是乙烷或丙烷碳同位素。YS1井登娄库组天然气δ13C2为-24.7‰,为典型的煤型气,YS1井营城组天然气δ13C2为-26.4‰~-26.5‰,DBIl-1井与DBl1-2井营城组天然气δ13C2为-26.1‰~-28.7‰,均为煤型气和油型气混合气区,DB33-9-3井天然气的δ13C2为-29.3‰,也接近煤型气和油型气混合气区,按照δ13C2值-29%。为界限,长岭断陷天然气为高成熟的煤型气。
1.“V”型鉴别图(δ13C1-δ13C2-δ13C3)
考虑到甲烷、乙烷与丙烷三者碳同位素的综合信息,在δ13C1—δ13C2δ13C3相关图上(图3-36),利用烷烃成因天然气碳同位素系列数据,能够鉴别不同成因的有机天然气。其中Ⅰ区为煤型气,Ⅱ区为油型气,Ⅲ区为混合型气,Ⅳ区为深层混合气(戴金星,1992;顾忆等,1998)。从图3-36可以看出,腰英台构造带与达尔罕构造带的天然气主要分布在碳同位素倒转区以及煤型气和油型气或者深层气的混合气区,而且天然气的成熟度明显偏高,DBll井的天然气可能有少量的油型气混入,双坨子地区的天然气主要为煤型气与油型气,由此表明,双坨子构造带的天然气的特征明显不同于上述两个构造带,腰英台与达尔罕构造带的天然气明显具有多源的性质,而且可能混有深部的无机气,造成其甲烷的同位素明显偏重,导致其烃类组分的同位素发生倒转。
2.δ13C2-δ13C1图
通过利用δ13C2值的大小将天然气划分为煤型气、油型气以及煤型气与油型气的混合气区,再通过δ13C1受热演化程度的差异将天然气划分为未熟、低熟,成熟、高熟以及过成熟五个阶段,可以很好地将天然气中煤型气与油型气类型分开,从图3-37可以看出,腰英台与达尔罕构造带的DB33-9-3、DB33-5-5、DB11井以及ChaS1井的个别样品可能为高过成熟的煤型气与油型气混合气,而其余样品天然气均为高过成熟的煤型气,双坨子地区的天然气成熟度略低,分布油型气或煤型气,不同于腰英台与达尔罕构造带的天然气的特征。

图3-36 天然气δ13C2-δ13C1不同成因类型图

1—ChaS1井区;2—双坨子地区;3—YS1(K1d);4—YS1(K1yc);5—YP1(K1yc);6—YS7(K1yc);7—YS2(K1yc);8—D2(K1yc);9—DB11(K1yc);10—DB33井区

图3-37 天然气δ13C2—δ13C1不同成因类型图

1—ChaS1井区;2—双坨子地区;3—YS1(K1d);4—YS1(K1yc);5—YP1(K1yc);6—YP7(K1yc),7—YS2(K1yc);8—D2(K1yc);9—DB11(K1yc);10—DB33井区
3.C1/C1-5与δ13C1图
利用干燥系数(C1/C1-5)与δ13C1同样也可以判识天然气类型.对于煤型气与油型气在不同的演化阶段过程中,其干燥系数与δ13C1存在一定的对应关系,对于成熟度高的油型气与煤型气,其干燥系数与δ13C1必然很高,图3-38中A1、B1、C1、D1、E1为煤型气演化阶段,界限由虚线表示,A2、B2、C2、D2、E2为油型气演化阶段,界限为由实线表示。通过图3-38可以看出,腰英台构造带与达尔罕构造带的营城组与登娄库组的天然气主要分布在高成熟的煤型气与油型气区,双坨子地区天然气具有煤型气与油型气的混合特征,明显不同于两构造带的天然气特征。

图3-38 利用C1/C1-5与δ13C1图判别不同类型烷烃气体

1—ChaS1井区;2—双坨子地区;3—YS1(K1d);4—Ys1(K1cy);5—D2(K1cy);6—YP1(K1yc);7—YP7(K1yc);8—YS2(K1yc);9—DB11(K1yc);10—DB3井区
(五)天然气同位素倒转现象分析
长岭断陷腰英台与达尔罕构造带天然气碳同位素系列数据分析表明,碳同位素倒转系列和负碳同位素系列是其主体,并且碳同位素明显偏重。导致碳同位素异常的原因有很多,研究天然气碳同位素倒转的原因,对天然气的成因或其经受的次生变化作出判断,可以作为天然气运移途径和气源对比的一种间接方法。戴金星(1993)曾对烷烃气碳同位素系列倒转问题作过详细研究,认为引起碳同位素系列倒转的主要原因有:1)有机气与无机气的混合,二者分别属于正碳同位素系列与负碳同位素系列的典型,当二者混合时,很容易发生同位素分布的倒转现象;2)煤型气与油型气的混合,这是造成碳同位素系列倒转的主要原因;3)同型不同源或同源不同期天然气的混合,同源的早期形成的低成熟度的天然气散失一部分后的剩余气,与晚期较高成熟度形成的天然气形成混合天然气,可导致烷烃气同位素倒转;4)生物降解作用,细菌选择降解某些组分致使剩余组分变重;5)地温增高也可使碳同位素倒转,在碳同位素交换平衡下,若地温高于100℃,则出现正碳同位素系列;当温度高于200℃时,则正碳同位素系列改变成为负碳同位素系列(戴金星,1990);6)源岩性质控制,在中国陆相河湖交替发育的含油气盆地,烃源岩有机质的分布是不均一的,同一套烃源岩中I型和Ⅲ型有机质可能同时存在,因此其产生的烃类烷烃气可能发生倒转,松辽盆地北部深层烃源岩就有混源的特点。
此外,盖层微渗漏造成的蒸发分馏作用也是许多天然气藏同位素出现倒转的重要原因,Prinzhofer等(1995)在对Jenden的资料进行重新解释时,认为微渗漏作用更能合理地解释Appalachian盆地天然气同位素的倒转现象,他们按Jenden等提出的混合模式计算后发现有些样品点并不符合混合模式,提出了一种新的微渗漏模式。黄海平(2000)利用微渗漏模式较好地解释了徐家围子断陷深层天然气同位素倒转的现象。从图3-39看出,腰英台构造带的ChaS1井区、达尔罕构造带的DB11-1、DB11-2、DB33-9-3、DB33-5-5等井天然气样品同位素发生倒转,是受到盖层微渗漏作用的影响。
导致天然气碳同位素倒转可能是上述因素之一,也可能是两种或两种以上的因素引起的。长岭断陷深层天然气普遍被认为主要来源于沙河子组和营城组,经历了较复杂的构造变形和较高的成熟演化阶段,可能存在多源气的混合,主力烃源岩发育于盆地断陷晚期和坳陷早期,火山活动频繁,烃源岩除正常的热演化外,还受到因火山活动引起的异常热事件,主力烃源岩沙河子组和火石岭组在盆地分布不均一,有机质具有非均质性,因生气层上下部位和层内成熟度及有机质性质不一样,也会使同层同时生成的天然气同位素发生混合而倒转。盆地基底发育深大断裂,无机成因的CO2、N2普遍存在,并且丰度较高,在腰英台地区CO2含量平均值为20%以上,因此天然气中可能有无机成因烷烃气加入,天然气藏产层主要在登娄库组与营城组,成藏模式比较复杂,天然气可能以垂直运移为主,运移路径较长,因而可以引起多期次的天然气碳同位素动力分馏效应。

图3-39 天然气同位素反转解释模式

1—ChaS1井区;2-双坨子地区;3—YS1(K1d);4—YS1(K1yc);5—D2(K1yc);6—YP1(K1yc);7—YP7(K1yc);8—YS2(K1yc);9—DB11(K1yc);10—DB33井区
据此按照通常的天然气同位素的划分,结合长岭断陷腰英台地区天然气各种分析数据可知,YS1井登娄库组以及ChaS1井个别样品表现出无机成因气的特点,而腰英台构造带大部分井区的样品,如YS1、YS2、YP7井以及达尔罕构造带的DB33井区、DB1I井主要分布有机成因的烷烃气(张枝焕、童亨茂等,2008)。

地壳中的天然气,绝大部分是气体化合物与气体元素的混合物,只有个别特殊情况下才由单一气体组成。因此,识别天然气的成因类型,应该是对天然气中各种组分的成因都进行识别,但这样要花费大量的时间和财力,所以,一般只鉴别天然气中几个主要组分的成因类型。欲寻求统一的标准来识别各种不同类型的天然气,目前尚难做到。下面仅介绍几种有代表性的判别方法。

(一)δ13C1-δ13CCO2分类图版

Гуцало(1981)从CH4与CO2共生体系碳同位素热平衡原理出发,以世界上已有CH4与CO2共生体系中测得的δ13C1和δ13CCO2为依据,将自然界不同成因类型的CH4与CO2共生体系划分为三个区(图5-33)。图中所标温度是天然气形成温度,它是作者据Craig(1953)提出的CH4与CO2碳同位素热平衡原理的近似方程得出的计算值。

Ⅰ区为无机成因气区。该区的δ13C1为41‰~-7‰,δCCO2为-7‰~27‰(在0‰附近特别集中)。洋脊喷出气、温泉气、火山气和各种岩浆岩和宇宙物质包裹体中的气体均属此区。

Ⅱ区为生物化学气区。该区的δ13C1为-92‰~-54‰,δ13CCO2为-36‰~1‰。世界上浅层生物成因气、现代沉积物中所有的CH4与CO2共存的天然气均属此区。

Ⅲ区为有机质热裂解气区。该区的δ13C1为-40‰~-19‰,δ13CCO2为-30‰~-16‰。沉积岩中的分散有机质、泥炭、煤和石油的热裂解气均落于此区。

该分类图版可以把天然气的来源粗略分为三种成因。随着样品数量的增多,三者界线可能有所变化,但该图版仍有很大的参考价值。

(二)δ13C1-Ro分类图版

Stahl(1974)根据世界各地大量天然气样品的δ13C1及其母岩Ro的测定,发现两者具有良好的相关性。这种相关性与母岩的有机质类型有关。Stahl分别建立了腐殖型和腐泥型烃源岩的Ro与其形成天然气的δ13C1关系曲线(图5-34)和相关公式。

石油与天然气地质学

从中可见,天然气的δ13C1与其母岩Ro呈半对数关系,这表明各种有机质随热演化形成天然气,其甲烷碳同位素含量有一定变化;腐殖型有机质烃源岩形成的天然气与相同演化程度的腐泥型有机质烃源岩所形成的天然气相比,具有更高的甲烷碳同位素含量。

根据测定的δ13C1,依据Stahl的分类图版能够区分有机成因气的母质类型,这对鉴别煤型气与油型气很有参考价值。

戴金星等(1985)在研究我国许多煤型气和油型气δ13C1与其源岩Ro的相关性后,也提出了类似的关系。

石油与天然气地质学

图5-34 不同母质形成的天然气δ13C1与其母岩Ro关系图(据Stahl,1974)

(三)综合分类图版

Shoell(1983)研究了世界若干含油气盆地及含煤盆地的天然气后,提出根据甲烷碳同位素(δ13C1)、乙烷碳同位素(δ13C2)、甲烷氢同位素(δD1)及重烃气含量(C+2)四项指标来划分有机成因气类型(图5-35),根据这套图版可识别有机成因气的类型:生物化学气(B)、石油伴生气(To)、凝析油伴生气(Tc)、腐泥型热裂解气\[TT(m)\]、腐殖型热裂解气\[TT(h)\]和混合气(M)等类型。此图版包括四幅图:

(a)图示有机质成熟度与油气生成的关系,表明天然气中甲烷碳同位素取决于有机质类型及成熟度;

(b)图示天然气重烃气含量与甲烷碳同位素含量的关系,图中Ms及Md分别表示向浅处和深处运移造成的成分变化;

(c)图示天然气甲烷碳同位素含量与氢同位素含量的关系;

(d)图示天然气甲烷碳同位素含量与乙烷碳同位素含量的关系。

这套图版除可进行有机成因气的成因分类外,尚可用来研究天然气的次生作用(如运移作用、成熟作用、混合作用等)及气体母质来源。在美国加利福尼亚湾、德国南部磨拉石盆地、奥地利维也纳盆地及意大利波河盆地,应用这套图版研究天然气的成因类型获得了良好效果。

图5-35 有机成因气的成因类型图解(据Shoell,1983)




天然气是如何形成的
2、有机成因 沉积有机质特别是腐泥型有机质在热降解成油过程中,与石油一起形成的天然气,或者是在后成作用阶段由有机质和早期形成的液态石油热裂解形成的天然气称为油型气,包括湿气(石油伴生气)、凝析气和裂解气。3、煤型气 煤田开采中,经常出现大量瓦斯涌出的现象,如重庆合川区一口井的瓦斯突...

天然气是如何形成的
2、有机成因 沉积有机质特别是腐泥型有机质在热降解成油过程中,与石油一起形成的天然气,或者是在后成作用阶段由有机质和早期形成的液态石油热裂解形成的天然气称为油型气,包括湿气(石油伴生气)、凝析气和裂解气。3、煤型气 煤田开采中,经常出现大量瓦斯涌出的现象,如重庆合川区一口井的瓦斯突...

沼气和天然气的区别 天然气天燃气形成原因
4、天然气按成因可分为生物成因气、油型气和煤型气。无机成因气尤其是非烃气受到高度重视。天然气天燃气形成原因 1、生物成因 成岩作用(阶段)早期,在浅层生物化学作用带内,沉积有机质经微生物的群体发酵和合成作用形成的天然气称为生物成因气。其中有时混有早期低温降解形成的气体。生物成因气出现...

什么是天然气?
自然界中天然气分布很广,成因类型繁多且热演化程度不同,其地化特征亦多种多样,因此很难用统一的指标加以识别。实践表明,用多项指标综合判别比用单一的指标更为可靠(戴金星,1993)。天然气成因判别所涉及的项目看,主要有同位素、气组分、轻烃以及生物标志化合物等四项,其中有些内容判别标准截然,具有绝对意义,有些内容...

天燃气形成的主要反应是什么?
由前面的叙述可知,根据成气的主要作用因素,可进一步将有机成因气分为生物成因气(包括成岩气)和热解气;后者是有机成因气的主体,还可根据成气有机质类型的不同再进一步划分:将由成油有机质(Ⅰ、Ⅱ型干酪根)形成与石油相伴生成的天然气称为油型气;而将Ⅲ型干酪根和成煤有机质在成煤变质...

天然气是怎么形成的?
第三是无机原因形成的天然气,地球上的元素通过像太阳那样的核聚变,碳元素由于发生较轻的元素核聚变的时候,和原本大气中的氢元素发生反应,形成的天然气。总之,天然气要经历很长的时间才能形成,是一种再生能力较弱的资源,形成的过程中对环境的因素要求很重要,所以天然气的形成是需要一定的气候和环境...

燃气起火的成因有哪些?起火后应该怎么办
燃气具有易燃易爆性。以天然气为例,主要成分是甲烷,闪点是-188℃,常温早高于这个温度,所以现实中这些气体一旦泄漏,达到爆炸极限,只要一些微小的火花就能爆燃(炸),哪怕是身上的静电也足以引爆。燃气起火的成因有哪些?人为因素 第一、用火过程中人离去却未关闭阀门,烧熔金属器具溶液引燃可燃物或者...

天然气中一般含硫化氢多少
自然界中天然气分布很广,成因类型繁多且热演化程度不同,其地化特征亦多种多样,因此很难用统一的指标加以识别。实践表明,用多项指标综合判别比用单一的指标更为可靠。天然气成因判别所涉及的项目看,主要有同位素、气组分、轻烃以及生物标志化合物等四项,其中有些内容判别标准截然,具有绝对意义,有些...

天然气和煤气的区别在哪里
1、气体不同:天然气的成分纯度比较高,主要成分是甲烷、氢气,没什么特殊气味.燃烧的比较充分,没有杂质,煤气的主要成分是一氧化碳,而且杂质比较多,有灰尘,无色无味但有毒。2、使用灶具不同:使用天然气需要天然气灶,使用煤气需要煤气灶,都有自己专门的使用器具,不能够混用。天然气形成原因 天然气的成因...

天然气是怎么形成的
1. 生物成因:在地表以下的成岩作用过程中,浅层沉积了大量的有机质。这些有机质在微生物群的发酵和合成作用下,形成了生物成因的天然气。这种天然气的埋藏深度相对较浅,时代较新,演化程度较低。2. 有机成因:有机成因的天然气主要包括油型气和煤型气。它们是通过沉积中的有机物质,在热降解的...

山城区19221433032: 怎么判断天然气类型 -
温鲁业立: 天然气按成因可分为四种类型: 生物成因气、油型气、煤型气 和无机成因.

山城区19221433032: 煤\石油\天然气是怎么形成的? -
温鲁业立:[答案] 答:化石燃料的形成: 煤的形成: 煤是古代植物遗体的堆积层埋在地下后,经过长时期的地质作用而形成的.据研究,几乎... 这样就将天然气划分为四种基本的成因类型,即生物成因气、油型气、煤型气和无机成因气(表). 有关各类型有机成因气与...

山城区19221433032: 简短地说天然气是怎么形成的 -
温鲁业立:[答案] 天然气——有机质在成岩作用下形成的一种主要由甲烷组成的气态化石燃料. 天然气的成因是多种多样的,归纳起来,天然气的成因可分为生物成因气、油型气和煤型气. 生物成因气——在成岩作用下沉积有机质经微生物的群体发酵和合成作用形成的...

山城区19221433032: 天然气是怎样形成的? -
温鲁业立: 根据形成机理天然气可划分为有机成因气和无机成因气两大类.所谓有机成因气是指分散的沉积有机质或可燃有机矿产(油、煤和油页岩),在其成岩成熟过程中,由微生物降解和热解作用形成的以烃气为主的天然气,就目前的研究程度来看,...

山城区19221433032: 天然气怎么形成的? -
温鲁业立: 它是有机物经过数百年复杂分解过程的结果.在离地面1000—3000米下,石油、甲烷和二氧化碳在紧密不渗透的沉积岩(如黏土和石灰岩)中形成.产生的轻气将向上移动,通过砂和砂石这些多孔性可渗透的贮存带时,它可能被留在适当结构的岩石层中,虽然天然气也可以单独存在,但是,通常石油与天然气是同时发现的.

山城区19221433032: 南阳天然气是什么类?南阳天然气是什么类型
温鲁业立: 天然气按成因可分为四类: 生物成因气、油型气、煤型气 和无机成因

山城区19221433032: 天然气是怎么形成的? -
温鲁业立: 天然气是动植物的尸体以及粪便等经过地质变迁后掩埋在地下产生一些列的反应生成的甲烷,乙烷,乙炔等可燃性气体.形成的过程很复杂……

山城区19221433032: 天然气怎样形成的
温鲁业立: 天然气与石油生成过程既有联系又有区别:石油主要形成于深成作用阶段,由催化裂解作用引起,而天然气的形成则贯穿于成岩、深成、后成直至变质作用的始终;与石油的生成相比,无论是原始物质还是生成环境,天然气的生成都更广泛、更迅速、更容易,各种类型的有机质都可形成天然气——腐泥型有机质则既生油又生气,腐植形有机质主要生成气态烃.因此天然气的成因是多种多样的.归纳起来,天然气的成因可分为生物成因气、油型气和煤型气.无机成因气尤其是非烃气受到高度重视,这里一并简要介绍,最后还了解各种成因气的判别方法.

山城区19221433032: 天然气是如何形成的?
温鲁业立: 生物成因气 :成岩作用(阶段)早期,在浅层生物化学作用带内,沉积有机质经微生物的群体发酵和合成作用形成的天然气.其中有时混有早期低温降解形成的气体 2、油型气: 油型气包括湿气(石油伴生气)、凝析气和裂解气.它们是沉积有机质特别是腐泥型有机质在热降解成油过程中,与石油一起形成的,或者是在后成作用阶段由有机质和早期形成的液态石油热裂解形成的.

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网