如何测定蔬菜样品中的全氮含量?

作者&投稿:廖秒 (若有异议请与网页底部的电邮联系)
如何测定植物样品的全氮含量?~

答:对于含硝态氮低的植物样品的测定方法如下:植物中的氮、磷大多数以有机态存在,钾以离子态存在。样品经浓H2SO4和氧化剂H2O2消煮,有机物被氧化分解,有机氮和磷转化成铵盐和磷酸盐,钾也全部释出。消煮液经定容后,可用于氮、磷、钾等元素的定量。采用H2O2为加速消煮的氧化剂,不仅操作手续简单快速,对氮、磷、钾的定量没有干扰,而且具有能满足一般生产和科研工作所要求的准确度。但要注意遵照操作规程的要求操作,防止有机氮被氧化成N2气或氮的氧化物而损失。
对适合于硝态氮含量较高的植物样品的测定方法如下:样品中的硝态氮在室温下与硫酸介质中的水杨酸作用,生成硝基水杨酸,再用硫代硫酸钠及锌粉使硝基水杨酸还原为氨基水杨酸。然后按H2SO4加速剂消煮法进行消煮样品,使样品中全部氮转化为铵盐。

答:待测液的制备如下:
(1)同蔬菜样品全氮的测定中不包括硝态氮的消煮方法(1)或(2)
(2)硫酸—硝酸—高氯酸(三酸)消煮法
① 适用范围:本消煮液可供包括磷在内的无机成分分析用。消煮时硝酸分解放出新生态氧,具有很强的氧化力,而硫酸的存在可加速氧化过程。高氯酸加热时生成无水高氯酸,可进一步与有机质作用,分解成水、氯、氧、新生态氯和氧,具有很强的氧化力,使有机复合体很快被氧化分解成简单的可溶性化合物,二氧化硅则脱水沉淀。
② 试剂配制:
三酸混合液:硫酸(比重1.84)—硝酸(比重1.42)—高氯酸(60%)以1∶8∶1混合。
10%的盐酸(HCl)溶液V/V∶10毫升浓盐酸稀释至100毫升。
0.5%盐酸溶液:0.5毫升浓盐酸稀释至100毫升。
③ 测定步骤:称取通过0.5毫米孔径的蔬菜样品2.0000克,放于100毫升三角瓶中,放入玻璃珠2~3粒以防跳动,瓶口加以弯颈小漏斗,加入10毫升三酸混合液,在通风橱内放置过夜。然后将三角瓶置于电热版上低温消煮40分钟后,逐渐升高温度,待消化物残留较少,消煮液呈白色时,再升高温度使高氯酸分解,冒白色浓烟,约2~3分钟即可分解完全,直至硫酸从瓶颈回流时(出现缕状白烟)即刻取下三角瓶,以防磷的损失。
用约20毫升10%的盐酸热溶液洗涤小漏斗,洗液注入三角瓶中。再加热溶解残渣至沸腾,随即用7~9厘米的无灰快速滤纸过滤滤液于100毫升容量瓶中,用热的0.5%盐酸液洗涤滤纸及沉淀,直至近刻度时再加水定容,摇匀备用。此待测液可供磷、钾、钠、钙、镁、锰、铁、铝测定用。滤纸上的残渣可作二氧化硅(SiO2)定量的测定。
样品中磷的测定:
(1)钒钼黄比色法
① 测定原理:适合于含磷量较高的蔬菜样品的测定(如籽粒样品)。消煮液中的正磷酸与偏钒酸和钼酸反应生成黄色的三元杂多酸,其吸光度与磷浓度呈正比,可在波长400~490纳米处用分光光度法测定。磷浓度较高时选用较长的波长,较低时选用较短的波长。
此法的优点是操作简便,可在室温下显色,黄色稳定。在硝酸、硫酸、高氯酸等介质中都适用,对酸度和显色剂的要求也不是太严格,干扰物少。在可见光范围内灵敏度较低,但适测范围广(约为1~20毫克/千克P),故广泛应用于含磷较高而且变幅较大的植物和肥料样品中的测定。
② 试剂配制:
钒钼酸铵溶液:钼酸铵(分析纯)25.0克溶于400毫升水中。另将偏钒酸铵(分析纯)1.25克溶于300毫升沸水中,冷却后加入250毫升浓硝酸(分析纯)。将钼酸铵溶液缓缓注入钒酸铵溶液中,不断搅匀,最后加水稀释至1升贮于棕色瓶中。
氢氧化钠(NaOH)溶液(6摩尔/升):称取24克氢氧化钠溶于水中,稀释至100毫升。
二硝基酚指示剂:称取0.25克2,6(或2,4)-二硝基酚溶于100毫升水中。
磷标准溶液[ρ(P)=50毫克/升]:称取在105℃烘干3小时的磷酸二氢钾(KH2PO4,分析纯)0.2195克溶于少量水,移入1升容量瓶中,加入浓硝酸5毫升后定容。
主要仪器:分光光度计。
③ 测定步骤:准确吸取待测液5~10毫升(V2,0.05~0.75毫克)于50毫升容量瓶中加蒸馏水使体积约为35毫升,加2滴二硝基酚指示剂,用6摩尔/升NaOH或6摩尔/升HNO3中和至溶液刚呈微黄色,准确加入10毫升钒钼酸铵试剂,用水定容至刻度(V2),摇匀。放置15分钟后分光光度计比色(采用450纳米波长及1厘米光径比色杯进行测定)。同时做空白试验进行比色。在标准曲线上查得各自的毫克/升值。
标准曲线或回归方程:准确吸取50毫克/升P标准液0、1.0、2.0、7.5、10.0、15.0毫升分别放入50毫升容量瓶中,加蒸馏水约至35毫升,按上述步骤显色,比色测读吸光度。以系列标准液浓度0、1.0、2.5、5.0、7.5、10、15毫克/升P为横坐标,吸光度为纵坐标绘制工作曲线,或求回归方程。
④ 结果计算:
ω(P)=ρ(P)×(V1/m)×(V 3/V 2)×10-4
式中:ω(P)——植物样品中磷的质量分数(%);
ρ(P)——从标准曲线或回归方程求得的显色液中磷的质量浓度(毫克/升);
V1——待测液定容总体积(毫升);
V2——比色测定时吸取待测液的体积(毫升);
V3——显色液定容体积(毫升);
m——样品重量(克);
10-4——将毫克/升浓度单位换算成%。
⑤ 注释:
[1]显色液中ρ(P)=1~5毫克/升时,测定波长用420纳米;5~20毫克/升时,测定波长用490纳米;待测液中铁含量高时应选用450纳米以清除铁离子的干扰。标准曲线应用同样波长测定绘制。也可用空白样液(即在待测液中不加显色剂)调整比色计的吸收值为零点的办法来消除干扰。
[2]一般室温下,温度对显色影响不大,但室温太低(如<15℃)时,需显色30分钟,稳定时间可达24小时。
[3]如试液为HCl、HClO4介质,显色剂应用HCl配制;试液为H2SO4介质,显色剂要用H2SO4配制;显色液酸的适宜浓度范围为0.2~1.6摩尔/升。酸度高显色慢且不完全,甚至不显色;低于0.2 摩尔/升时易产生沉淀物,干扰测定。钼酸盐在显色液中的终浓度适宜范围为1.6×10-3~1.0×10-2摩尔/升,钒酸盐为8.0×10-5~2.2×10-3摩尔/升。
(2)钼锑抗分光光度法
① 方法原理:适合含磷量较低的植物样品的测定(如茎秆样品等)。
蔬菜样品经酸消煮处理后使各种形态的磷转化成磷酸盐,在一定磷浓度范围内,在酸性介质中待测液中的正磷酸与钼酸钠和酒石酸锑钾生成一种三元杂多酸,后者在室温下能迅速被抗坏血酸还原为蓝色络合物,可用分光光度计测定。
② 试剂配制:
6摩尔/升NaOH溶液。
0.2%二硝基酚指示剂。
2摩尔/升H2SO4溶液:5.6毫升浓H2SO4加水至100毫升。
钼锑抗贮存液:浓H2SO4 (分析纯)126毫升缓慢地注入约400毫升水中,搅拌冷却。称取10.0克钼酸铵(分析纯)溶解于约60℃的300毫升温水中,冷却。然后将硫酸溶液缓缓倒入钼酸铵溶液中,再加入100毫升0.5%酒石酸锑钾(KSbOC4O6·1/2H2O,分析纯)溶液,最后用水稀释至1升,避光贮存。此贮存液含钼酸铵为1%,酸浓度为c(1/2 H2SO4)=4.5摩尔/升。
钼锑抗显色剂:1.5克抗坏血酸(C6H8O6,分析纯)溶于100毫升钼锑抗贮存液中。此液需随配随用,有效期1天,而冰箱中存放,可用3~4天。
磷标准工作液:[ρ(P)=5毫克/升]:吸取100毫克/升P标准贮存液稀释20倍,即为5毫克/升P标准工作溶液,此液不宜久存。
③ 测定步骤:准确吸取待测液2.00~5.00毫升(V2,含P 5~30微克)与50毫升容量瓶中,用水稀释至约30毫升,加 1~2滴二硝基酚指示剂,滴加6摩尔/升NaOH溶液中和至刚呈黄色,再加入1滴2摩尔/升 H2SO4溶液使溶液的黄色刚刚褪去,然后加入钼锑抗显色剂5.00毫升,摇匀定容(V3)。在室温高于15℃的条件下放置30分钟后,用1厘米光径比色杯在波长700纳米处测定吸光度,以空白溶液为参比调节仪器零点。
标准曲线或回归方程:准确吸取ρ(P)=5毫克/升标准工作溶液0、1、4、6、8毫升,分别放入50毫升容量瓶中,加水至约30毫升,同上步骤显色并定容,即得0、0.1、0.2、0.4、0.6、0.8毫克/升P标准系列溶液,与待测液同时测定,读取吸光度。然后绘制标准曲线或直线回归方程。
④ 结果计算:同(1)计算公式。
根据分光光度计的性能,可选用650~890纳米波长处测定,880~890纳米处灵敏度高。

答:待测液的制备:
第一类包括硝态氮的消煮方法。
(1)硫酸—铬粒—重铬酸钾消煮法
① 适用范围:本法适合于含硝态氮的植物样品全氮的测定,硝态氮的回收率可达99%。铬粒是在稀盐酸中,先将样品中的硝态氮(NO-3-N)还原为铵态氮(NH+4-N),然后按硫酸—重铬酸钾消煮法将有机态氮转变为铵,而可用蒸馏法测定,是一个比较简便而快捷的方法。
② 试剂配制:
铬粒:含铬量为99.9%的金属铬。
饱和重铬酸钾:称取重铬酸钾(K2Cr2O7,化学纯)200克,溶于1升热蒸馏水中。
2摩尔/升盐酸:20毫升浓盐酸(比重1.19)加入100毫升水中。
③ 测定步骤:称取通过0.42毫米孔径的风干蔬菜样品0.2000~0.5000克,于50毫升开氏瓶或100毫升三角瓶中,加混合催化剂1.85克,浓硫酸5毫升混合后瓶口盖以小漏斗,置于电炉或电热板上文火加热,以防反应过于强烈,待样品成液状时再逐渐加大火力。火力以控制瓶内硫酸回流大约在瓶颈的1/3处为宜。待消煮液清亮后,继续消煮半小时,稍待冷却后,将消煮液全部移入50毫升容量瓶中,定容待测。
④ 注释:
[1]与样品消煮的同时应做不带样品的空白消煮。
[2]样品称量应控制硝态氮含量在10~20毫克范围内,如样品中硝态氮含量太高,会引起硝态氮还原不足而影响测定结果。
[3]在铬粒全部溶解后必须冷却至室温,才可加入浓硫酸,是为防止加浓硫酸时反应过于剧烈。
[4]硫酸消煮液必须经充分冷却后才能加饱和重铬酸钾溶液,否则作用激烈,易引起样品溅失。重铬酸钾溶液加入后,如果溶液立即出现绿色或消煮1~2分钟后即变绿色,说明重铬酸钾量不足,此时可补加固体重铬酸钾1克,继续消煮。
[5]消煮液经稀释后,蒸馏时体积应占开氏瓶容量的1/3左右为宜。大于1/3时,体积太大,蒸馏不便。小于1/3时酸碱作用剧烈。也给蒸馏带来困难。
(2)锌铁粉还原法
① 适用范围:本方法是利用锌铁粉在酸性溶液中所放出的氢将样品中的硝态氮还原为铵态氮。进而在硫酸条件下利用重铬酸钾将有机态氮分解为铵态氮,再用蒸馏法测定之。
② 试剂配制:
10%硫酸:将比重为1.84的浓硫酸56.9毫升缓缓加入盛有943.1毫升蒸馏水的1升烧杯中。
锌铁粉混合还原剂:化学纯锌粉9份与化学纯铁粉1份混合。
20%重铬酸钾:化学纯重铬酸钾(K2Cr2O7)20克溶于100毫升水中。
③ 测定步骤:称取0.5000~1.000克样品置于250毫升开氏瓶中,加0.1~0.2克锌铁粉,8~10毫升10%硫酸,轻轻转动,加热,使溶液微沸10分钟。冷却,再加8毫升浓硫酸。瓶口盖以小漏斗,消煮10~15分钟,直至呈酱油状。冷却后加20%重铬酸钾5毫升,再微沸5分钟,取下,将全部溶液直接加水稀释后安装于普通定氮蒸馏装置上蒸馏测定氮含量。如样品含氮量高时,可先将溶液移至100毫升容量瓶中稀释定容,然后吸取部分溶液进行蒸馏或吸取更少的溶液用半微量定氮器蒸馏定氮。
④ 注释:铁锌粉混合还原剂中的还原铁含有相当的氮,必须借助空白分析加以校正,以免试剂带来的误差。
以将消煮液定容一定体积,再分取部分蒸馏定氮为好。这样既可减少蒸馏过程中发生跳动和冒泡的危险,又能做氮的重复测定。
(3)水杨酸还原法
① 适用范围:本法是用硫酸和水杨酸一同消煮样品,先将样品中的硝态氮转化为硝基酚,再用硫代硫酸钠把硝基酚还原为氨基酚,再经硫酸消煮成为铵盐,而可用蒸馏法测定之。
② 试剂配制:
含水杨酸的硫酸:30克水杨酸(不含氮)溶于1升不含氮的浓硫酸(比重1.84)中。
10∶1硫酸钠和硫酸铜混合盐。
硫代硫酸钠(Na2S2O3·5H2O)固体或锌粉。
③ 测定步骤:称取0.500~1.000克样品或新鲜茎叶样品2.50~5.0克,置于100毫升开氏瓶中,加约3.5克硫酸钠和硫酸铜混合盐和8毫升含水杨酸(或苯酚)的浓硫酸,轻轻转动,使酸与样品混匀,放置约30分钟,加1.5克硫代硫酸钠(或0.4克锌粉)和10毫升蒸馏水,放置约10分钟,待还原反应完全后,缓缓加热,慎防泡沫上升溢出瓶颈。待泡沫停止发生后即可加强火力,使溶液保持沸腾,直至溶液转变为黄绿色后,再煮约20分钟。消煮完毕稍放冷却,小心加水约25毫升,将溶液转入100毫升容量瓶中。待溶液完全冷却后,用水定容,此溶液可除供测定氮外,还可供磷钾的测定。
④ 注释:
[1]在用含水杨酸的硫酸处理样品前,不应将水加入样品中,因水会影响水杨酸对硝态氮的回收。可用0.4克锌粉代替1.5克硫代硫酸钠,但不能用锌粒。
[2]消煮完毕应在硫酸溶液中的大量盐类尚未析出凝固前,小心加入约25毫升水。如充分冷却有大量盐类析出,经充分摇匀而又不溶解时,则应稍加热助溶。
第二类不包括硝态氮的消煮方法。
(1)硫酸—高氯酸消煮法
① 适用范围:本消煮液可适用于氮磷钾连续测定。氮的测定用蒸馏法、比色法皆可,磷钾可用比色法及火焰光度计法。
② 试剂配制:
浓硫酸:分析纯。
60%高氯酸:若市售为70%浓度时,应稀释至60%。
③ 测定步骤:称取0.5000~1.000克(通过0.42毫米孔径)蔬菜样品置于50毫升或100毫升开氏瓶中,用少量水湿润样品后,加入浓硫酸5毫升摇匀,放置约30分钟(放置过夜,可缩短消煮时间),然后加入60%高氯酸5~10滴,瓶口置小漏斗,在电炉上低温加热消煮(硫酸不能冒白烟,以防失氮)5~8分钟。如消煮液转为无色,表示消化完全。如仍为黑色或棕色,则可将开氏瓶取下冷却,补加60%高氯酸1~2滴(切忌多加,应视硝化液颜色而定,以免引起氮的损失),置电炉上消煮至溶液完全清澈无色时为止。消煮完毕冷却,将消煮液无损移入100毫升容量瓶中,摇匀备用。
(2)硫酸—过氧化氢消煮法
① 适用范围:同硫酸—高氯酸消煮法。
② 试剂配制:浓硫酸:分析纯。30%过氧化氢。
③ 测定步骤:称取0.5000~1.000克(通过0.42毫米孔径)蔬菜样品置于50毫升开氏瓶中,用少量水湿润样品后,加入浓硫酸5毫升摇匀,放置半小时或过夜,瓶口置小漏斗,在电炉上低温加热消煮至瓶内硫酸开始回流(消化液呈酱红色,冒大量白烟),微沸5分钟,取下冷却,逐滴加入30%过氧化氢约0.5毫升,再加热微沸5分钟,取下冷却,添加30%过氧化氢,反复操作,直至消化液完全清亮为止。添加30%H2O2量应每次逐量减少。最后一次应微沸5分钟,以除尽剩余的H2O2。冷却后先加入10毫升蒸馏水,再无损地移入100毫升容量瓶中定容,摇匀备用。
样品中全氮的测定:
(1)蒸馏法
①试剂配制:
40%氢氧化钠:称取各液用固体氢氧化钠(NaOH)400克与硬质玻璃烧杯中,加400毫升蒸馏水溶解,并不断搅拌,以防烧杯底部固结,冷却后倒入涂石蜡的细颈玻璃瓶或塑料瓶中,加塞放置几天,虹吸出清液,以去CO2的蒸馏水稀释至1升,加盖橡皮塞。
硼酸—指示剂液:称取硼酸(H3BO3)20克加水900毫升稍稍加热溶解之,冷却后,加入混合指示剂(0.099克溴甲酚绿和0.066克甲基红溶于100毫升乙醇中)20毫升,然后以0.1摩尔/升NaOH调节溶液至红紫色(pH4.5),最后加水至1000毫升,摇匀,贮于塑料瓶中备用。
0.02摩尔/升硫酸标准溶液:量取浓硫酸2.8毫升,加蒸馏水稀释至5000毫升,然后用标准碱或硼砂标定之。
0.01摩尔/升硫酸标准溶液:将0.02摩尔/升硫酸标准溶液用蒸馏水准确地稀释一倍。
②测定步骤:
蒸馏:吸取上述消煮液(任何一种均可)10~20毫升(使含N1毫克左右),置于半微量蒸馏器如图5-1中1,另备150毫升三角瓶,内加2%的含混合指示剂的硼酸溶液5毫升,然后将三角瓶置于冷凝管下端3,使冷凝管口下端插入硼酸液面约 3~4厘米。此后从小漏斗6加入40%NaOH溶液10毫升,立即关紧7、9和10,同时打开8,使烧瓶的蒸气通入蒸馏瓶中,蒸馏约需12~15分钟,蒸馏液体积达50毫升,即可停止蒸馏。取下三角瓶,用气压差原理,立即打开9关紧8,使蒸馏瓶中液体倒流入分水筒4中,再打开8,关紧9同时打开10,排出液体后立即关紧,通蒸气1~2分钟后,另用一三角瓶盛蒸馏水接于冷凝管下,打开9,关紧8通过倒吸用蒸馏水洗净蒸馏瓶,如此操作重复二次,即可洗净蒸馏瓶,供下次使用。

图5-1 半微量蒸馏器
滴定:另将0.01摩尔/升硫酸标准溶液装入滴定管中,滴定硼酸溶液中吸收的氨。滴定过程中颜色由蓝绿经蓝紫突变为紫红色即为滴定终点。滴定的同时,从消煮直至滴定必须做2~3个空白试验,空白除不加样品外,其他操作均与样品操作相同,以校正滴定和试剂引起的误差。
结果计算:
样品全氮量(%)=N(V-V0)×0.014×取用量倍数×100%/W
式中:N——为标准酸的摩尔浓度;
V——为样品分析所用去的标准酸毫升数(毫升);
V0——为空白试验所用去的标准酸毫升数(毫升);
0.014——为每毫克摩氮的重量(克);
W——烘干样品重(克);
取用量倍数=消煮液总量/蒸馏所用消煮液量。
注释:
在蒸馏样品前,必须将蒸馏装置空蒸5分钟左右,以使蒸气发生器及蒸馏系统中可能存在的含氮杂质去除干净,可用钠氏试剂检查或者在蒸气发生器内加入少许硫酸进行酸化,以固定自来水中可能存在的铵离子,但是必须使用玻璃烧瓶代替铁质蒸气发生器。若蒸馏时发生倒吸现象,可立即补加硼酸吸收液,仍可继续蒸馏。在蒸馏时必须充分冷凝,否则会使吸收液发热,使氨因受热而挥发(用硼酸吸收时)。
(2)靛酚蓝比色法
① 试剂配制:
碱性酚:取50毫升重蒸馏的苯酚于100毫升蒸馏水中,溶120克氢氧化钠(NaOH)于200毫升水中,待冷却混合后加入无水乙醇250毫升,然后再加酒石酸15克,稀释至1000毫升。
碱性次氯酸钠:称取20克氢氧化钠(NaOH)和20克四硼酸钠溶于200毫升水中,加入次氯酸钠(含活性氯不少于5.2%)600毫升,用水稀释至1升。
铵态氮(NH+4-N)标准溶液:准确称取在90℃干燥过的氯化铵(NH4Cl)0.3821克,热解于水,并定容至1升。此为100毫克/千克N标准液。
② 测定步骤:从已定容的待测液中吸取5.00毫升于50毫升或100毫升容量瓶中定容(视样品含氮量高低而选择稀释10倍或20倍)。摇匀后吸取1.00~5.00毫升(使含氮15~25微克间)于另一容量瓶中加蒸馏水至约25毫升,加入1毫升EDTA—甲基红溶液,用0.3摩尔/升氢氧化钠调至黄色(pH=6),依次加入5毫升酚溶液,5毫升次氯酸钠溶液,摇匀定容,放置1小时以上。用625纳米波长(红色)1厘米光径比色杯进行比色。同时吸取5毫克/千克铵态氮(NH+4-N)标准溶液0、0.5、1.0、2.0、3.0、4.0、5.0毫升于7个50毫升容量瓶中,加水约至30毫升,加1毫升EDTA—甲基红溶液即上述测定步骤进行,此系列标准溶液浓度为0、0.05、0.1、0.2、0.3、0.4、0.5毫克/千克(NH+4-N)。
③ 结果计算:

如果第一次从定容的100毫升消煮液中吸取5毫升定容50毫升,继后又从中吸取5毫升于50毫升容量瓶中显色,则取用量倍数为:(100/5)×(50/5)=200。

答:植株样品全氮的测定包括两步,第一步是准备氮素的待测液,第二步是将待测液中的氮素进行定量。

(1)待测液的制备

①第一类包括硝态氮的消煮方法:

A.硫酸—铬粒—重铬酸钾消煮法:

适用范围:本法适合于含硝态氮的植物样品全氮的测定,硝态氮的回收率可达99%。铬粒是在稀盐酸中,先将样品中的硝态氮(NO-3-N)还原为铵态氮(NH+4-N),然后按硫酸—重铬酸钾消煮法将有机态氮转变为铵,而可用蒸馏法测定,是一个比较简便而快捷的方法。

试剂配制:

铬粒:含铬量为99.9%的金属铬。

饱和重铬酸钾:称取重铬酸钾(K2Cr2O7,化学纯)200克,溶于1升热蒸馏水中。

2摩尔/升盐酸:20毫升浓盐酸(相对密度1.19)加入100毫升水中。

测定步骤:称取通过0.42毫米孔径的风干经济作物样品0.2000~0.5000克,于50毫升开氏瓶或100毫升三角瓶中,加混合催化剂1.85克,浓硫酸5毫升混合后瓶口盖以小漏斗,置于电炉或电热板上文火加热,以防反应过于强烈,待样品成液状时再逐渐加大火力。火力以控制瓶内硫酸回流大约在瓶颈的1/3处为宜。待消煮液清亮后,继续消煮半小时,稍待冷却后,将消煮液全部移入50毫升容量瓶中,定容待测。

注:

[1]与样品消煮的同时应做不带样品的空白消煮。

[2]样品称量应控制硝态氮含量在10~20毫克范围内,如样品中硝态氮含量太高,会引起硝态氮还原不足而影响测定结果。

[3]在铬粒全部溶解后必须冷却至室温,才可加入浓硫酸,是为防止加浓硫酸时反应过于剧烈。

[4]硫酸消煮液必须经充分冷却后才能加饱和重铬酸钾溶液,否则作用激烈,易引起样品溅失。重铬酸钾溶液加入后,如果溶液立即出现绿色或消煮1~2分钟后即变绿色,说明重铬酸钾量不足,此时可补加固体重铬酸钾1克,继续消煮。

[5]消煮液经稀释后,蒸馏时体积应占开氏瓶容量的1/3左右为宜。大于1/3时,体积太大,蒸馏不便。小于1/3时酸碱作用剧烈,也给蒸馏带来困难。

B.锌铁粉还原法:

适用范围:本方法是利用锌铁粉在酸性溶液中所放出的氢将样品中的硝态氮还原为铵态氮。进而在硫酸条件下利用重铬酸钾将有机态氮分解为铵态氮,再用蒸馏法测定。

试剂配制:

10%硫酸:将相对密度为1.84的浓硫酸56.9毫升缓缓加入盛有943.1毫升蒸馏水的1升烧杯中。

锌铁粉混合还原剂[注1]:化学纯锌粉9份与化学纯铁粉1份混合。

20%重铬酸钾:化学纯重铬酸钾(K2Cr2O7)20克溶于100毫升水中。

测定步骤:称取0.5000~1.000克样品置于250毫升开氏瓶中,加0.1~0.2克锌铁粉,8~10毫升10%硫酸,轻轻转动,加热,使溶液微沸10分钟。冷却,再加8毫升浓硫酸。瓶口盖以小漏斗,消煮10~15分钟,直至呈酱油状。冷却后加20%重铬酸钾5毫升,再微沸5分钟,取下,将全部溶液直接加水稀释后安装于普通定氮蒸馏装置上蒸馏测定氮含量[注2]。如样品含氮量高时,可先将溶液移至100毫升容量瓶中稀释定容,然后吸取部分溶液进行蒸馏或吸取更少的溶液用半微量定氮器蒸馏定氮。

注:

[1]铁锌粉混合还原剂中的还原铁含有相当的氮,必须借助空白分析加以校正,以免试剂带来的误差。

[2]以将消煮液定容一定体积,再分取部分蒸馏定氮为好。这样既可减少蒸馏过程中发生跳动和冒泡的危险,又能做氮的重复测定。

C.水杨酸还原法:

适用范围:本法是用硫酸和水杨酸一同消煮样品,先将样品中的硝态氮转化为硝基酚,再用硫代硫酸钠把硝基酚还原为氨基酚,再经硫酸消煮成为铵盐,可用蒸馏法测定。

试剂配制:

含水杨酸的硫酸:30克水杨酸(不含氮)溶于1升不含氮的浓硫酸(相对密度1.84)中。也可改用含苯酚的浓硫酸,40克苯酚溶液1升浓硫酸。

10∶1硫酸钠和硫酸铜混合盐。

硫代硫酸钠(Na2S2O3·5H2O)固体或锌粉。

测定步骤:称取0.500~1.000克样品或新鲜茎叶样品2.50~5.0克,置于100毫升开氏瓶中,加约3.5克硫酸钠和硫酸铜混合盐和8毫升含水杨酸(或苯酚)的浓硫酸[注1],轻轻转动,使酸与样品混匀,放置约30分钟,加1.5克硫代硫酸钠(或0.4克锌粉)[注2]和10毫升蒸馏水,放置约10分钟,待还原反应完全后,缓缓加热,慎防泡沫上升溢出瓶颈。待泡沫停止发生后即可加强火力,使溶液保持沸腾,直至溶液转变为黄绿色后,再煮约20分钟。消煮完毕稍放冷却,小心加水约25毫升,将溶液转入100毫升容量瓶中[注3]。待溶液完全冷却后,用水定容,此溶液除供测定氮外,还可供磷、钾的测定。

注:

[1]在用含水杨酸的硫酸处理样品前,不应将水加入样品中,因水会影响水杨酸对硝态氮的回收。

[2]可用0.4克锌粉代替1.5克硫代硫酸钠,但不能用锌粒。

[3]消煮完毕应在硫酸溶液中的大量盐类尚未析出凝固前,小心加入约25毫升水。如充分冷却有大量盐类析出,经充分摇匀而又不溶解时,则应稍加热助溶。

②第二类不包括硝态氮的消煮方法:

A.硫酸—高氯酸消煮法:

适用范围:本消煮液可适用于氮、磷、钾连续测定。氮的测定用蒸馏法、比色法皆可,磷、钾可用比色法及火焰光度计法。

试剂配制:

浓硫酸:分析纯。

60%高氯酸:若市售为70%浓度时,应稀释至60%。

测定步骤:称取0.5000~1.000克(通过0.42毫米孔径)经济作物样品置于50毫升或100毫升开氏瓶中,用少量水湿润样品后,加入浓硫酸5毫升摇匀,放置约30分钟(放置过夜,可缩短消煮时间),然后加入60%高氯酸5~10滴,瓶口置小漏斗,在电炉上低温加热消煮(硫酸不能冒白烟,以防失氮)5~8分钟。如消煮液转为无色,表示消化完全。如仍为黑色或棕色,则可将开氏瓶取下冷却,补加60%高氯酸1~2滴(切忌多加,应视硝化液颜色而定,以免引起氮的损失),置电炉上消煮至溶液完全清澈无色时止。消煮完毕冷却,将消煮液无损移入100毫升容量瓶中,摇匀备用。

B.硫酸—过氧化氢消煮法:

适用范围:同硫酸—高氯酸消煮法。

试剂配制:浓硫酸:分析纯。

30%过氧化氢。

测定步骤:称取0.5000~1.000克(通过0.42毫米孔径)经济作物样品置于50毫升开氏瓶中,用少量水湿润样品后,加入浓硫酸5毫升摇匀,放置半小时或过夜,瓶口置小漏斗,在电炉上低温加热消煮至瓶内硫酸开始回流(消化液呈酱红色,冒大量白烟),微沸5分钟,取下冷却,逐滴加入30%过氧化氢约0.5毫升,再加热微沸5分钟,取下冷却,添加30%过氧化氢,反复操作,直至消化液完全清亮为止。添加30%H2O2量应每次逐量减少。最后一次应微沸5分钟,以除尽剩余的H2O2。冷却后先加入10毫升蒸馏水,再无损地移入100毫升容量瓶中定容,摇匀备用。

(2)待测液中氮的测定

①蒸馏法:

试剂配制:

40%氢氧化钠(约10摩尔/升):称取固体氢氧化钠(NaOH)400克与硬质玻璃烧杯中,加400毫升蒸馏水溶解,并不断搅拌,以防烧杯底部固结,冷却后倒入涂石蜡的细颈玻璃瓶或塑料瓶中,加塞放置几天,虹吸出清液,以去CO2的蒸馏水稀释至1升,加盖橡皮塞。

硼酸指示剂液:称取硼酸(H3BO3)20g加水900毫升稍稍加热溶解,冷却后,加入混合指示剂(0.099克溴甲酚绿和0.066克甲基红溶于100毫升乙醇中)20毫升,然后以0.1摩尔/升NaOH调节溶液至红紫色(pH4.5)最后加水至1000毫升,摇匀,贮于塑料瓶中备用。

0.02摩尔/升硫酸标准溶液:量取浓硫酸2.8毫升,加蒸馏水稀释至5000毫升,然后用标准碱或硼砂标定。

0.01摩尔/升硫酸标准溶液:将0.02摩尔/升硫酸标准溶液用蒸馏水准确地稀释一倍。

测定步骤:

蒸馏:吸取上述消煮液(任何一种均可)10~20毫升(使含N量在1毫克左右),置于半微量蒸馏器如图5-1中1,另备150毫升三角瓶,内加2%含混合指示剂的硼酸溶液5毫升,然后将三角瓶置于冷凝管下端3,使冷凝管口下端插入硼酸液面3~4厘米。此后从小漏斗6加入40%NaOH溶液10毫升,立即关紧7、9和10,同时打开8,使烧瓶的蒸气通入蒸馏瓶中,蒸馏需12~15分钟,蒸馏液体积达50毫升,即可停止蒸馏。取下三角瓶,用气压差原理,立即打开9关紧8,使蒸馏瓶中液体倒流入分水筒4中,再打开8,关紧9同时打开10,排出液体后立即关紧,通蒸汽1~2分钟后,另用一三角瓶盛蒸馏水接于冷凝管下,打开9,关紧8通过倒吸用蒸馏水洗净蒸馏瓶,如此操作重复二次,即可洗净蒸馏瓶,供下次使用。

图5-1半微量蒸馏器

滴定:另将0.01摩尔/升(后0.02摩尔/升)硫酸标准溶液装入滴定管中,滴定硼酸溶液中吸收的氨。滴定过程中颜色由蓝绿经蓝紫突变为紫红色即为滴定终点。滴定的同时,从消煮直至滴定必须做2~3个空白试验,空白除不加样品外,其他操作均与样品操作相同,以校正滴定和试剂引起的误差。

结果计算:

样品全氮量=N(V-V0)×0.014×取用量倍数/W×100%

式中:N——标准酸的浓度(摩尔/升);

V——样品分析所用去的标准酸体积(毫升);

V0——空白试验所用去的标准酸体积(毫升);

0.014——每毫摩尔氮的质量(克);

W——烘干样品重;

取用量倍数——消煮液总量/蒸馏所用消煮液量。

注:在蒸馏样品前,必须将蒸馏装置空蒸5分钟左右,以使蒸汽发生器及蒸馏系统中可能存在的含氮杂质去除干净,可用钠氏试剂检查或者在蒸汽发生器内加入少许硫酸进行酸化,以固定自来水中可能存在的铵离子,但是必须使用玻璃烧瓶代替铁质蒸汽发生器。若蒸馏时发生倒吸现象,可立即补加硼酸吸收液,仍可继续蒸馏。在蒸馏时必须充分冷凝,否则会使吸收液发热,使氨因受热而挥发(用硼酸吸收时)。

②靛酚蓝比色法:

试剂配制:

碱性酚:取50毫升重蒸馏的苯酚于100毫升蒸馏水中,溶120克氢氧化钠(NaOH)于200毫升水中,待冷却混合后加入无水乙醇250毫升,然后再加酒石酸15克,稀释至1000毫升。

碱性次氯酸钠:称取20克氢氧化钠(NaOH)和20克四硼酸钠溶于200毫升水中,加入次氯酸钠(含活性氯不少于5.2%)600毫升,用水稀释至1升。

铵态氮(NH+4-N)标准溶液:准确称取在90℃干燥过的氯化铵(NH4Cl)0.3821克,热解于水,并定容至1升。此为100毫克/千克的N标准液。

测定步骤:从已定容的待测液中吸取5.00毫升于50毫升或100毫升容量瓶中定容(视样品含氮量高低而选择稀释10倍或20倍)。摇匀后吸取1.00~5.00毫升(使含氮15~25微克)于另一容量瓶中加蒸馏水至约25毫升,加入1毫升EDTA-甲基红溶液,用0.3摩尔/升氢氧化钠调至黄色(pH=6),依次加入5毫升酚溶液,5毫升次氯酸钠溶液,摇匀定容,放置1小时以上。用625纳米波长(红色)1厘米光径比色杯进行比色。

同时吸取5毫克/千克铵态氮(NH+4-N)标准溶液0、0.5毫升、1.0毫升、2.0毫升、3.0毫升、4.0毫升、5.0毫升于7个50毫升容量瓶中,加水约至30毫升,加1毫升EDTA-甲基红溶液即继上述测定步骤进行,此系列标准溶液浓度为0、0.05毫克/千克、0.1毫克/千克、0.2毫克/千克、0.3毫克/千克、0.4毫克/千克、0.5毫克/千克(NH+4-N)。

结果计算:

如果第一次从定容的100毫升消煮液中吸取5毫升定容50毫升,继后又从中吸取5毫升于50毫升容量瓶中显色,则取用量倍数为:(100/5)×(50/5)=200。




如何测试蔬菜中的硝酸盐
如何测试蔬菜中的硝酸盐 液体样品检测:直接取澄清液体样品1ml加入到检测管中,盖上盖,将试剂摇溶,10分钟后与标准色板对比,找出与检测管中溶液颜色相同的色阶,该色阶上的数值即为样品中亚硝酸盐的含量mg\/L(以NaNO2计)。固体或半固体样品检测:取粉碎均匀的样品1.0g或1.0ml至10ml比色管中,加...

蔬菜中毒死蜱含量的测定注意事项
这个测定的注意事项如下:1、选择适当的样品:应根据需求选择不同代表性、数量和类型的样品进行检测。同时,应遵循合理抽样的原则,确保样品的真实性和可靠性。2、样品处理:由于农药残留在蔬菜表面或内部,需要对样品进行充分处理。通常采用溶剂萃取法、固相萃取法等方法进行提取和净化。3、分析方法:蔬菜中...

蔬菜中总黄酮的含量测定注意事项
注意事项如下:1、蔬菜样品应当充分干燥,不要留有多余的水分。2、萃取过程中注意超声时间和强度。3、铝介质硅胶柱处理过程中应保持缓慢而均匀,避免空隙和高密度区域的出现。4、样品洗脱过程中,应当保证洗脱液与铝介质硅胶柱表面相接触。

果蔬中农药残留的分析方法有哪些
农药残留检测仪检测方法分类有:1、试纸法 2、酶抑制率法 3、酶联免疫法 4、薄层色谱法 5、光谱分析 6、色谱分析 最快捷的农药残留检测方法 1、纸片法:CSY-N12便携式农药残留测定仪是根据国标方法---速测卡法(纸片法)而专门设计的仪器。主要用于水果、蔬菜、茶叶、粮食、水及土壤中有机磷和...

蔬菜水果中有机磷农药的残留如何检测?
所以不适宜将它们应用在蔬果中有机磷农药残留检测中。而如果可以灵活地运用直接电位法,那么可以快速地检测果蔬的有机磷残留情况,检测结果的准确性和响应速度都比较高,且检测地点也不会受到限制,这可以为有机磷农药残留提供必要的指导。而当前生物传感器这种小体积、高灵敏度的检测仪器非常适用于有机磷...

简述蔬菜产品中总灰分的测定的答案是什么
1、有机物质中的碳、氢、氮等元素与有机物质本身的氧及空气中的氧生成二氧化碳、氮氧化合物及水分而散失。2、无机物以硫酸盐、磷酸盐、碳酸盐、氧化物无机盐和金属氧化物的形式保留下来,这些残留物即为灰分,称重残留物的质量即可计算出样品中总灰分的含量。

气相色谱法可以测定蔬菜水果中的什么含量
本方法在实验的基础上创新性的增加了C18、石墨炭黑等吸附剂粉末同时净化,根据气相色谱 μECD检测器进行溶剂转溶,实现了对基质复杂的蔬菜中乙草胺、甲草胺、苯氧菊酯、多效唑、环氟菌胺、氟虫腈、咪唑菌酮、氯菊酯、氟氯氰菊酯、高效氯氰菊酯、高效氰戊菊酯、丙炔氟草胺及茚虫威等多种农药残留的快速检测。2、...

水果蔬菜中的有机农药残留量的测定方法
当蔬菜样品提取液对酶的抑制率大于50%时,表示样品中有高剂量有机磷或氨基甲酸甲酯类农药存在可判定样品为阳性结果。实验测定的结果为:样品 质量m\/g 抑制率 阳性(抑制率<50%)A 1.094 6.39 阴性 B 1.114 63.17 阳性 C 1.037 15.47 阴性 从测定的结果来看,B号样品的有机磷农药表现为...

怎么测定蔬菜或水果中维他命C的含量
【实验原理】本实验利用维生素C的还原性,使其与氧化性的I2反应:淀粉溶液遇到碘会变成蓝紫色,这是淀粉的特性。维生素C能与蓝紫色溶液中的碘发生作用,使溶液变成无色。通过这个原理,可以用来检验一些蔬菜中的维生素C。通过消耗I2的量可以计算维生素C的含量。【仪器药品】酸式滴定管,锥形瓶,研钵,...

食品中水分的测定方法有哪些?
食品中水分的测定是一项至关重要的标准,具体遵循GB\/T 5009.3-2016的规定,用于确定食品中的水分含量。测定方法多样,包括直接干燥法、减压干燥法、蒸馏法和卡尔·费休法等。卡尔·费休法适用于水分含量较高的样品,即大于1.0x10-3g\/100g,适用范围广泛,可用于蔬菜、谷物及其制品等众多食品类型。直接...

庆安县13488282414: 如何测定蔬菜样品中的全磷?
苗筠博利: 待测液的制备如下:(1)同蔬菜样品全氮的测定中不包括硝态氮的消煮方法 或⑵(1)硫酸一硝酸一高氯酸(三酸)消煮法.①适用范围:本消煮液可供包括磷在内的无机成分...

庆安县13488282414: 植物全磷、全氮、全钾的测定 -
苗筠博利: 一、植物全氮测定 (一)H2SO4-H2O2消煮法 1、适用范围 本方法不包括硝态氮的植物全氮测定,适合于含硝态氮低的植物样品的测定. 2、方法提要 植物中的氮、磷大多数以有机态存在,钾以离子态存在.样品经浓H2SO4和氧化剂H2O2消...

庆安县13488282414: 全氮的检测方法
苗筠博利: 方法见下:1. 土壤有机质含量测定参照GB9834-88(NY/T85-1988)土壤有机质测定法测定.用定量的重铬酸钾-硫酸溶液,在电砂浴加热条件下,使土壤中的有机碳氧化,剩余的重铬酸钾用硫酸亚铁标准溶液滴定,并以二氧化硅为添加物作试剂空...

庆安县13488282414: 有机肥料全氮含量是多少 -
苗筠博利: 这个是需要自己测量的,不同的化肥不同的含氮量.提供一下测量方法:有机肥料全氮的测定采用硫酸-过氧化氢消煮、碱化后蒸馏定氮的方法,适用于非泥质有机肥料中全氮含量的测定.本方法依据NY/T297—1995制定. 方法原理有机肥料中...

庆安县13488282414: 用凯氏定氮法测定微生物的含氮量,微生物是否需要消煮 -
苗筠博利:[答案] 土壤中氮素的总贮量及其存在状态,与作物的产量在某种条件下有一定的正相关.土壤中氮素来源于四方面:动、植物残体的... 分析全氮含量可以判断土壤肥力,为推荐施肥量作参考. 土壤、植株和其它有机体中全氮的测定通常都采用开氏消煮法,用...

庆安县13488282414: 如何土壤中氮含量的测试 -
苗筠博利: 土壤全氮的测定 1 适用范围 本方法适用于各类土壤全氮含量的测定. 2 测定原理 样品在加速剂的参与下,用浓硫酸消煮时,各种含氮有机化合物,经过复杂的高温分解反应,转化为铵态氮.碱化后蒸馏出来的氨用硼酸吸收,以酸标准溶液滴定...

庆安县13488282414: 急求土壤中氮磷的测定方法?最好分开说,说的越详细我会加分的. -
苗筠博利:[答案] 土壤全氮测定:样品在加速剂的参与下,用浓硫酸消煮时,各种含氮有机化合物经过复杂的高温分解反应,转化为铵态氮.简化后蒸馏出来的氨用硼酸吸收,以酸标准溶液滴定,求出土壤全氮含量.包括硝态氮和亚硝态氮的全单氮测定,在样品消煮前...

庆安县13488282414: 求土壤全氮和速效钾的测定具体操作方法 -
苗筠博利: 1、土壤全氮的测定:采用硒粉—硫酸铜—硫酸硝化法,又称开氏法.硒的催化效力最高,但长期易于产生氮的挥发;硫酸铜的催化效力低,混合使用既能使消煮时间缩短,又能防止氮的挥发. 2、速效钾的测定:四苯硼钠比浊法,选用硝酸钠为提取剂,防止铵离子或有机质干扰,适用于含钾量少的速效钾测定.

庆安县13488282414: 怎样测定水生植物总氮、总磷 -
苗筠博利: 一般先要将植物样品的消化,再蒸馏、吸收和滴定.测定N的话一般用凯氏法测定,测P一般用钼蓝比色法在分光光度计(72型)读出消光值,对比标准曲线得出 注意事项就是消化的时候要注意消化主体和催化剂的选择要恰当 实验操作要精细,尽量减少误差 我知道的差不多就是这样了

庆安县13488282414: 谁用元素分析仪测定过土壤全氮,它的测定原理是啥? 同时...
苗筠博利: 一个问题,测定原理:待测样品在高温条件下,经氧气的氧化与复合催化剂的共同作用,使待测样品发生氧化燃烧与还原反应,被测样品组份转化为气态物质(CO2, H2O,N2 与 SO2),并在载气的推动下,进入分离检测单元. 分离单元采用色...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网