关于爱因斯坦的相对论。想知道简单易懂点的。不要太复杂了。

作者&投稿:邲娜 (若有异议请与网页底部的电邮联系)
爱因斯坦的相对论的内容?~

  论动体的电动力学
  爱因斯坦
  根据范岱年、赵中立、许良英编译《爱因斯坦文集》编辑
  大家知道,麦克斯韦电动力学——象现在通常为人们所理解的那样——应用到运动的物体上时,就要引起一些不对称,而这种不对称似乎不是现象所固有的。比如设想一个磁体同一个导体之间的电动力的相互作用。在这里,可观察到的现象只同导休和磁体的相对运动有关,可是按照通常的看法,这两个物体之中,究竟是这个在运动,还是那个在运动,却是截然不同的两回事。如果是磁体在运动,导体静止着,那么在磁体附近就会出现一个具有一定能量的电场,它在导体各部分所在的地方产生一股电流。但是如果磁体是静止的,而导体在运动,那么磁体附近就没有电场,可是在导体中却有一电动势,这种电动势本身虽然并不相当于能量,但是它——假定这里所考虑的两种情况中的相对运动是相等的——却会引起电流,这种电流的大小和路线都同前一情况中由电力所产生的一样。
  堵如此类的例子,以及企图证实地球相对于“光煤质”运动的实验的失败,引起了这样一种猜想:绝对静止这概念,不仅在力学中,而且在电动力学中也不符合现象的特性,倒是应当认为,凡是对力学方程适用的一切坐标系,对于上述电动力学和光学的定律也一样适用,对于第一级微量来说,这是已经证明了的。我们要把这个猜想(它的内容以后就称之为“相对性原理”)提升为公设,并且还要引进另一条在表面上看来同它不相容的公设:光在空虚空间里总是以一确定的速度 C 传播着,这速度同发射体的运动状态无关。由这两条公设,根据静体的麦克斯韦理论,就足以得到一个简单而又不自相矛盾的动体电动力学。“光以太”的引用将被证明是多余的,因为按照这里所要阐明的见解,既不需要引进一个共有特殊性质的“绝对静止的空间”,也不需要给发生电磁过程的空虚实间中的每个点规定一个速度矢量。
  这里所要闸明的理论——象其他各种电动力学一样——是以刚体的运动学为根据的,因为任何这种理论所讲的,都是关于刚体(坐标系)、时钟和电磁过程之间的关系。对这种情况考虑不足,就是动体电动力学目前所必须克服的那些困难的根源。
  一 运动学部分
  §1、同时性的定义
  设有一个牛顿力学方程在其中有效的坐标系。为了使我们的陈述比较严谨,并且便于将这坐标系同以后要引进来的别的坐标系在字面上加以区别,我们叫它“静系”。
  如果一个质点相对于这个坐标系是静止的,那么它相对于后者的位置就能够用刚性的量杆按照欧儿里得几何的方法来定出,并且能用笛卡儿坐标来表示。
  如果我们要描述一个质点的运动,我们就以时间的函数来给出它的坐标值。现在我们必须记住,这样的数学描述,只有在我们十分清楚地懂得“时间”在这里指的是什么之后才有物理意义。我们应当考虑到:凡是时间在里面起作用的我们的一切判断,总是关于同时的事件的判断。比如我说,“那列火车7点钟到达这里”,这大概是说:“我的表的短针指到 7 同火车的到达是同时的事件。”
  也许有人认为,用“我的表的短针的位置”来代替“时间”,也许就有可能克服由于定义“时间”而带来的一切困难。事实上,如果问题只是在于为这只表所在的地点来定义一种时间,那么这样一种定义就已经足够了;但是,如果问题是要把发生在不同地点的一系列事件在时间上联系起来,或者说——其结果依然一样——要定出那些在远离这只表的地点所发生的事件的时间,那么这徉的定义就不够了。
  当然,我们对于用如下的办法来测定事件的时间也许会成到满意,那就是让观察者同表一起处于坐标的原点上,而当每一个表明事件发生的光信号通过空虚空间到达观察者时,他就把当时的时针位置同光到达的时间对应起来。但是这种对应关系有一个缺点,正如我们从经验中所已知道的那样,它同这个带有表的观察者所在的位置有关。通过下面的考虑,我们得到一种此较切合实际得多的测定法。
  如果在空间的A点放一只钟,那么对于贴近 A处的事件的时间,A处的一个观察者能够由找出同这些事件同时出现的时针位置来加以测定,如果.又在空间的B点放一只钟——我们还要加一句,“这是一只同放在 A 处的那只完全一样的钟。” 那么,通过在 B 处的观察者,也能够求出贴近 B 处的事件的时间。但要是没有进一步的规定,就不可能把 A 处的事件同 B 处的事件在时间上进行比较;到此为止,我们只定义了“ A 时间”和“ B 时间”,但是并没有定义对于 A 和 B 是公共的“时间”。只有当我们通过定义,把光从 A 到 B 所需要的“时间”,规定为等于它从 B 到 A 所需要的“时间”,我们才能够定义 A 和 B 的公共“时间”。设在“A 时间”tA ,从 A 发出一道光线射向 B ,它在“ B 时间”, tB 。又从 B 被反射向 A ,而在“A时间”t`A回到A处。如果
  tB-tA=t’A-t’B
  那么这两只钟按照定义是同步的。
  我们假定,这个同步性的定义是可以没有矛盾的,并且对于无论多少个点也都适用,于是下面两个关系是普遍有效的:
  1 .如果在 B 处的钟同在 A 处的钟同步,那么在 A 处的钟也就同B处的钟同步。
  2 .如果在 A 处的钟既同 B 处的钟,又同 C 处的钟同步的,那么, B 处同 C 处的两只钟也是相互同步的。
  这样,我们借助于某些(假想的)物理经验,对于静止在不同地方的各只钟,规定了什么叫做它们是同步的,从而显然也就获得了“同时”和“时间”的定义。一个事件的“时间”,就是在这事件发生地点静止的一只钟同该事件同时的一种指示,而这只钟是同某一只特定的静止的钟同步的,而且对于一切的时间测定,也都是同这只特定的钟同步的。
  根据经验,我们还把下列量值
  2|AB|/(t’A-tA)=c
  当作一个普适常数(光在空虚空间中的速度)。
  要点是,我们用静止在静止坐标系中的钟来定义时间,由于它从属于静止的坐标系,我们把这样定义的时间叫做“静系时间”。
  §2 关于长度和附间的相对性
  下面的考虑是以相对性原理和光速不变原理为依据的,这两条原理我们定义,如下。
  1 .物理体系的状态据以变化的定律,同描述这些状态变化时所参照的坐标系究竞是用两个在互相匀速移动着的坐标系中的哪一个并无关系。
  2 .任何光线在“静止的”坐标系中都是以确定的速度 c运动着,不管这道光线是由静止的还是运动的物体发射出来的。由此,得
  光速=光路的路程/时间间隔
  这里的“时间间隔”,是依照§1中所定义的意义来理解的。
  设有一静止的刚性杆;用一根也是静止的量杆量得它的长度是l.我们现在设想这杆的轴是放在静止坐标系的 X 轴上,然后使这根杆沿着X轴向 x 增加的方向作匀速的平行移动(速度是 v )。我们现在来考查这根运动着的杆的长度,并且设想它的长度是由下面两种操作来确定的:
  a )观察者同前面所给的量杆以及那根要量度的杆一道运动,并且直接用量杆同杆相叠合来量出杆的长度,正象要量的杆、观察者和量杆都处于静止时一样。
  b )观察者借助于一些安置在静系中的、并且根据§1作同步运行的静止的钟,在某一特定时刻 t ,求出那根要量的杆的始末两端处于静系中的哪两个点上。用那根已经使用过的在这种情况下是静止的量杆所量得的这两点之间的距离,也是一种长度,我们可以称它为“杆的长度”。
  由操作 a )求得的长度,我们可称之为“动系中杆的长度”。根据相对性原理,它必定等于静止杆的长度 l 。
  由操作 b )求得的长度,我们可称之为“静系中(运动着的)杆的长度”。这种长度我们要根据我们的两条原理来加以确定,并且将会发现,它是不同于 l的。
  通常所用的运动学心照不宣地假定了:用上面这两种操作所测得的长度彼此是完全相等的,或者换句话说,一个运动着的刚体,于时期 t ,在几何学关系上完全可以用静止在一定位置上的同一物体来代替。
  此外,我们设想,在杆的两端(A和B),都放着一只同静系的钟同步了的钟,也就是说,这些钟在任何瞬间所报的时刻,都同它们所在地方的“静系时间”相一致;因此,这些钟也是“在静系中同步的”。
  我们进一步设想,在每一只钟那里都有一位运动着的观察者同它在一起,而且他们把§1中确立起来的关于两只钟同步运行的判据应用到这两只钟上。设有一道光线在时 间tA从 A 处发出,在时间tB于 B 处被反射回,并在时间t`A返回到 A 处。考虑到光速不变原理,我们得到:
  tB-tA=rAB/(c-v) 和 t’A-tB=rAB/(c+v)
  此处 rAB表示运动着的杆的长度——在静系中量得的。因此,同动杆一起运动着的观察者会发现这两只钟不是同步进行的,可是处在静系中的观察者却会宣称这两只钟是同步的。
  由此可见,我们不能给予同时性这概念以任何绝对的意义;两个事件,从一个坐标系看来是同时的,而从另一个相对于这个坐标系运动着的坐标系看来,它们就不能再被认为是同时的事件了。

相对论是关于时空和引力的基本理论,主要由阿尔伯特·爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。
爱因斯坦关于光速对于任何人而言都应该显得相同。

广义相对论是爱因斯坦继狭义相对论之后,深入研究引力理论,于1913年提出的引力场的相对论理论。这一理论完全不同于牛顿的引力论,它把引力场归结为物体周围的时空弯曲,把物体受引力作用而运动,归结为物体在弯曲时空中沿短程线的自由运动。因此,广义相对论亦称时空几何动力学,即把引力归结为时空的几何特性。

如何理解广义相对论的时空弯曲呢?这里我们借用一个模型式的比拟来加以说明。假如有两个质量很大的钢球,按牛顿的看法,它们因万有引力相互吸引,将彼此接近。而爱因斯坦的广义相对论则并不认为这两个钢球间存在吸引力。它们之所以相互靠近,是由于没有钢球出现时,周围的时空犹如一张拉平的网,现在两个钢球把这张时空网压弯了,于是两个钢球就沿着弯曲的网滚到一起来了。这就相当于因时空弯曲物体沿短程线的运动。所以,爱因斯坦的广义相对论是不存在“引力”的引力理论。

进一步说,这个理论是建立在等效原理及广义协变原理这两个基本假设之上的。等效原理是从物体的惯性质量与引力质量相等这个基本事实出发,认为引力与加速系中的惯性力等效,两者原则上是无法区分的;广义协变原理,可以认为是等效原理的一种数学表示,即认为反映物理规律的一切微分方程应当在所有参考系中保持形式不变,也可以说认为一切参考系是平等的,从而打破了狭义相对论中惯性系的特殊地位,由于参考系选择的任意性而得名为广义相对论。

我们知道,牛顿的万有引力定律认为,一切有质量的物体均相互吸引,这是一种静态的超距作用。

在广义相对论中物质产生引力场的规律由爱因斯坦场方程表示,它所反映的引力作用是动态的,以光速来传递的。

广义相对论是比牛顿引力论更一般的理论,牛顿引力论只是广义相对论的弱场近似。所谓弱场是指物体在引力场中的引力能远小于固有能,力场中,才显示出两者的差别,这时必须应用广义相对论才能正确处理引力问题。

广义相对论在1915年建立后,爱因斯坦就提出了可以从三个方面来检验其正确性,即所谓三大实验验证。这就是光线在太阳附近的偏折,水星近日点的进动以及光谱线在引力场中的频移,这些不久即为当时的实验观测所证实。以后又有人设计了雷达回波时间延迟实验,很快在更高精度上证实了广义相对论。60年代天文学上的一系列新发现:3K微波背景辐射、脉冲星、类星体、X射电源等新的天体物理观测都有力地支持了广义相对论,从而使人们对广义相对论的兴趣由冷转热。特别是应用广义相对论来研究天体物理和宇宙学,已成为物理学中的一个热门前沿。

爱因斯坦一直把广义相对论看作是自己一生中最重要的科学成果,他说过,“要是我没有发现狭义相对论,也会有别人发现的,问题已经成熟。但是我认为,广义相对论不一样。”确实,广义相对论比狭义相对论包含了更加深刻的思想,这一全新的引力理论至今仍是一个最美好的引力理论。没有大胆的革新精神和不屈不挠的毅力,没有敏锐的理论直觉能力和坚实的数学基础,是不可能建立起广义相对论的。伟大的科学家汤姆逊曾经把广义相对论称作为人类历史上最伟大的成就之一。

狭义相对论就是
狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。
相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。
物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。
伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。
著名的麦克尔逊--莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理,光速不变原理。
由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0。99倍光速,人的速度也是0。99倍光速,那么地面观测者的结论不是1。98倍光速,而是0。999949倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。

1905年爱因斯坦(1879——1955)发表了狭义相对论。这个理论指出在宇宙中唯一不变的是光线在真空中的速度,其它任何事物——速度、长度、质量和经过的时间,都随观察者的参考系(特定观察)而变化。这个理论形成了一个著名的公式:E=MC2狭义相对论认为时间不是绝对的(即固定不变的)。爱因斯坦指出,随着物体(观察者所见到的)线性运动速度的加快,时间会变慢。其二:任何物体以光速运动时,其长度将会缩短为零。提出时间和空间都是绝对的,空间和时间是完全分开的。然而,在相对论数学中,时间和三维空间——长、宽和高,一起构成一个四维空间框架,叫做时空关联集。
爱因斯坦从他的狭义相对论中推导出等式E=MC2(这里E是能量,M是质量,C是恒定的光速),他用这个等式解释了质量和能量是等价的。现在认为,质量和能量是同一种物质的不同形式,称为质能。例如,如果一个物体的能量减少了一定量E,则它的质量也减少等于MC2的量,然而,质能不会消失,只不过以另一种形式被释放,它叫辐射能量。
1915年发表了他的广义相对论。他解释了引力作用和加速度作用没有差别的原因。他还解释了引力是如何和时空弯曲联系起来的,利用数学,爱因斯坦指出物体使周围空间、时间弯曲,在物体具有很大的相对质量(例如一颗恒星)时,这种弯曲可使从它旁边经过的任何其它事物,即使是光线,也改变路径。广义相对论指出,时空曲率将产生引力。当光线经过一些大质量的天体时,它的路线是弯曲的,这源于它沿着大质量物体所形成的时空曲率。因为黑洞是极大的质量的浓缩,它周围的时空非常弯曲,即使是光线也无法逃逸。
几百年来牛顿的经典力学使众多人信服,因为他适用于低速、宏观的惯性系。而相对论适用于高速(接近光速)的或微观的量子态以及非惯性系,人们很难通过实验得以证实和观察,所以很多人无法接受这一事实。但相对论可以很好的解决这一问题。因此说相对论是现代物理学的奠基石。

首先,让我们思考一下质量在日常生活中代表什么。“它是重量”?事实上,我们认为质量是某种可称量的东西,正如我们是这样度量它的:我们把需要测出其质量的物体放在一架天平上。我们这样做是利用了质量的什么性质呢?是地球和被测物体相互吸引的事实。这种质量被称作“引力质量”。我们称它为“引力的”是因为它决定了宇宙中所有星星和恒星的运行:地球和太阳间的引力质量驱使地球围绕后者作近乎圆形的环绕运动。

现在,试着在一个平面上推你的汽车。你不能否认你的汽车强烈地反抗着你要给它的加速度。这是因为你的汽车有一个非常大的质量。移动轻的物体要比移动重的物体轻松。质量也可以用另一种方式定义:“它反抗加速度”。这种质量被称作“惯性质量”。

因此我们得出这个结论:我们可以用两种方法度量质量。要么我们称它的重量(非常简单),要么我们测量它对加速度的抵抗(使用牛顿定律)。

人们做了许多实验以测量同一物体的惯性质量和引力质量。所有的实验结果都得出同一结论:惯性质量等于引力质量。

牛顿自己意识到这种质量的等同性是由某种他的理论不能够解释的原因引起的。但他认为这一结果是一种简单的巧合。与此相反,爱因斯坦发现这种等同性中存在着一条取代牛顿理论的通道。

日常经验验证了这一等同性:两个物体(一轻一重)会以相同的速度“下落”。然而重的物体受到的地球引力比轻的大。那么为什么它不会“落”得更快呢?因为它对加速度的抵抗更强。结论是,引力场中物体的加速度与其质量无关。伽利略是第一个注意到此现象的人。重要的是你应该明白,引力场中所有的物体“以同一速度下落”是(经典力学中)惯性质量和引力质量等同的结果。

现在我们关注一下“下落”这个表述。物体“下落”是由于地球的引力质量产生了地球的引力场。两个物体在所有相同的引力场中的速度相同。不论是月亮的还是太阳的,它们以相同的比率被加速。这就是说它们的速度在每秒钟内的增量相同。(加速度是速度每秒的增加值)

引力质量和惯性质量的等同性是爱因斯坦论据中的第三假设

爱因斯坦一直在寻找“引力质量与惯性质量相等”的解释。为了这个目标,他作出了被称作“等同原理”的第三假设。它说明:如果一个惯性系相对于一个伽利略系被均匀地加速,那么我们就可以通过引入相对于它的一个均匀引力场而认为它(该惯性系)是静止的。

让我们来考查一个惯性系K’,它有一个相对于伽利略系的均匀加速运动。在K 和K’周围有许多物体。此物体相对于K是静止的。因此这些物体相对于K’有一个相同的加速运动。这个加速度对所有的物体都是相同的,并且与K’相对于K的加速度方向相反。我们说过,在一个引力场中所有物体的加速度的大小都是相同的,因此其效果等同于K’是静止的并且存在一个均匀的引力场。

因此如果我们确立等同原理,两个物体的质量相等只是它的一个简单推论。 这就是为什么(质量)等同是支持等同原理的一个重要论据。

通过假定K’静止且引力场存在,我们将K’理解为一个伽利略系,(这样我们就可以)在其中研究力学规律。由此爱因斯坦确立了他的第四个原理。

相对论就像座标轴一样啊,在我看来就是每种东西都有它相对应的另一面,也就是异时空间

当一个物体的速度大于光速时,可以看到未来。


爱因斯坦的相对论是?
爱因斯坦相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。狭义相对论讨论的是匀速直线运动的惯性参照系之间的物理定律,后者则推广到具有加速度的参照系中(...

爱因斯坦的相对论是什么?
相对论是关于物质运动与时间空间关系的理论。它是现代物理学的理论基础之一。相对论是本世纪初由爱因斯坦等在总结实验事实(如迈克耳孙?莫雷实验)的基础上所建立和发展。在这以前,人们根据经典时空观(集中表现为伽利略变换)解释光的传播等问题时,导致一系列尖锐的矛盾。相对论针对这些问题,建立了物理学...

爱因斯坦的相对论是什么?
相对论是关于时空和引力的基本理论,主要由爱因斯坦创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论...

爱因斯坦提出的狭义相对论和广义相对论是什么?
广义相对论是爱因斯坦继狭义相对论之后,深入研究引力理论,于1913年提出的引力场的相对论理论。这一理论完全不同于牛顿的引力论,它把引力场归结为物体周围的时空弯曲,把物体受引力作用而运动,归结为物体在弯曲时空中沿短程线的自由运动。因此,广义相对论亦称时空几何动力学,即把引力归结为时空的几何特...

目前世界上有哪些东西是利用爱因斯坦的相对论做出来的?
3. 激光技术:基于爱因斯坦对光子的研究,科学家们得以开发出激光技术。激光在医疗、通信、工业加工等多个领域展现出极高的应用价值,这一切都要归功于爱因斯坦的理论贡献。4. 电磁铁和发电机:爱因斯坦的相对论还间接影响了电磁学的发展。电磁铁的工作原理是基于法拉第电磁感应定律,而这一定律在相对论...

相对论是谁发明的?
相对论是爱因斯坦创立的。相对论主要由爱因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。爱因斯坦在论文《论运动物体的电动力学》里提出了狭义相对论的两个基本公设:“光速不变”,以及“相对性原理”,经过整理之后,这些创举成为爱因斯坦的狭义相对论。爱因斯坦又在1915年左右发表的一系列...

爱因斯坦的相对论为什么能成为经典?
阿尔伯特·爱因斯坦于1905 年的狭义相对论是物理学领域有史以来发表的最重要的论文之一。狭义相对论解释了速度如何影响质量、时间和空间。该理论包括一种用光速来定义能量和物质之间关系的方法——少量的质量 (m) 可以与大量的能量 (E) 互换,如经典方程 E = mc^2 。爱因斯坦于 1915 年正式将引力添加...

爱因斯坦的相对论是什么?
大家有兴趣可以去看一看,而相对论研究的是宇宙层次的了,简单来说宇宙就相当于一个巨大的空间,但是也需要进行物质信息的传输。而光就是这个传输物质,一切的地方时间信息物质等等都是通过光去传播,光就是一个绝对的速度,没有任何参照物,我们研究的速度都是一个相对速度,就比如我们坐在车上,相对于...

爱因斯坦的相对论
爱因斯坦受法拉第“电磁场”无处不在的启发,想象空间就是一个“引力场”, “引力场”就是空间 ,这是广义相对论的核心。从这个理解出发,爱因斯坦推论出:太阳会使其周围的空间发生弯曲,所以地球并不是在某种神秘力量的牵引下绕着太阳旋转,而是在一个倾斜的空间中行进。就好像弹珠在漏斗中滚动一样:...

爱因斯坦的相对论如何解释了平行宇宙?
两者之间只要通过孔洞就能够穿越。对于宇宙有着无穷无尽人类还未知道的奥妙,自古以来的科学家们也发现了很多难以解释的点,就比如当年最为杰出的物理科学家爱因斯坦所提出的“广义相对论”,他认为宇宙还有平行的对应宇宙其实是互通的,两者之间只有通过孔洞就可以实现穿越,其实简单来说就是好比...

南和县19639066371: 爱因斯坦相对论最简单通俗的说法 -
牛炊大安: 爱因斯坦相对论最简单通俗的说法: 相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念.它发展了牛顿力学,推动物理学发展到一个新的高度. 狭义相对论的基本...

南和县19639066371: 简单说一下爱因斯坦的相对论
牛炊大安: 相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论).相对论的基本假设是相对性原理,即物理定律与参照系的选择无关.狭义相对论和广义相对论的区...

南和县19639066371: 谁能解释一下爱因斯坦的相对论 ! -
牛炊大安: 相对论是关于时空和引力的基本理论,主要由爱因斯坦创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论).相对论的基本假设是光速不变原理,相对性原理和等效原理.相对论和量子力学是现代物理学的两大基本支柱.奠定了...

南和县19639066371: 谁能简单地说明一下爱因斯坦的相对论,(越简单越好) -
牛炊大安: 广义的相对论是指相对概念的论述,最常见的相对概念是大-小、多-少,相对于1,10是多的,相对于100,10是少的.通常所说的相对论,特指爱因斯坦相对论.相对论的产生,全部是由特定的人从特定的角度去论述问题,而全面的论述问题,无...

南和县19639066371: 用最简单的语言诠释爱因斯坦的相对论? -
牛炊大安: 哈哈,爱因斯坦自己都说过 用通俗的语言来解释相对论就是 当你在做你不喜欢的事时,时间过的很慢 当你做你喜欢的事时,时间过的很快 原话不是这样的,类似意思吧

南和县19639066371: 爱因斯坦的相对论简单的说是什么? -
牛炊大安: 如果你还不了解爱因斯坦的理论,不妨尝试一下这一解释:“将你的手放在热炉子上放1分钟,你的感觉就像是一年.和一位漂亮姑娘在一起坐上1小时,你的感觉好像只有1分钟.这就是相对论.”够简单了吧.....

南和县19639066371: 谁可以给我爱因斯坦的相对论的简单介绍! -
牛炊大安: 相对论分为广义相对论和狭义相对论 广义相对论的基本概念解释: 广义相对论是爱因斯坦继狭义相对论之后,深入研究引力理论,于1913年提出的引力场的相对论理论.这一理论完全不同于牛顿的引力论,它把引力场归结为物体周围的时空弯...

南和县19639066371: 解释一下爱因斯坦相对论的内容? -
牛炊大安:[答案] 爱因斯坦相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论).相对论的基本假设是相对性原理,即物理定律与参照系的选择无关.狭义相对论讨论的是匀速直线...

南和县19639066371: 爱因斯坦相对论内容 -
牛炊大安: 相对论是关于时空和引力的理论,主要由爱因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论.相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础.相对论极大地改变了人类对宇宙和自然...

南和县19639066371: 简要概括爱因斯坦的相对论 -
牛炊大安: 狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解.在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间.现代微观物理学提到的高维空间...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网