物理 电学史上有哪些重要的实验

作者&投稿:哀全 (若有异议请与网页底部的电邮联系)
物理 电学史上有哪些重要的实验~

1600年,英国物理学家吉伯发现,不仅琥珀和煤玉摩擦后能吸引轻小物体,而且相当多的物质经摩擦后也都具有吸引轻小物体的性质,他注意到这些物质经摩擦后并不具备磁石那种指南北的性质。为了表明与磁性的不同,他采用琥珀的希腊字母拼音把这种性质称为"电的"。 差不多同时,美国的富兰克林做了许多有意义的工作,使得人们对电的认识更加丰富。 18世纪后期开始了电荷相互作用的定量研究。1776年,普里斯特利发现带电金属容器内表面没有电荷,猜测电力与万有引力有相似的规律。1769年,鲁宾孙通过作用在一个小球上电力和重力平衡的实验,第一次直接测定了两个电荷相互作用力与距离二次方成反比。1773年,卡文迪什推算出电力与距离的二次方成反比,他的这一实验是近代精确验证电力定律的雏形。 1785年,库仑设计了精巧的扭秤实验,直接测定了两个静止点电荷的相互作用力与它们之间的距离二次方成反比,与它们的电量乘积成正比。库仑的实验得到了世界的公认,从此电学的研究开始进入科学行列。1811年泊松把早先力学中拉普拉斯在万有引力定律基础上发展起来的势论用于静电,发展了静电学的解析理论。 18世纪后期电学的另一个重要的发展是意大利物理学家伏打发明了电池,在这之前,电学实验只能用摩擦起电机的莱顿瓶进行,而它们只能提供短暂的电流。1780年,意大利的解剖学家伽伐尼偶然观察到与金属相接触的蛙腿发生抽动。他进一步的实验发现,若用两种金属分别接触蛙腿的筋腱和肌肉,则当两种金属相碰时,蛙腿也会发生抽动。 1792年,伏打对此进行了仔细研究之后,认为蛙腿的抽动是一种对电流的灵敏反应。电流是两种不同金属插在一定的溶液内并构成回路时产生的,而肌肉提供了这种溶液。基于这一思想,1799年,他制造了第一个能产生持续电流的化学电池,其装置为一系列按同样顺序叠起来的银片、锌片和用盐水浸泡过的硬纸板组成的柱体,叫做伏打电堆。 1822年塞贝克进一步发现,将铜线和一根别种金属(铋)线连成回路,并维持两个接头的不同温度,也可获得微弱而持续的电流,这就是热电效应。 虽然早在1750年富兰克林已经观察到莱顿瓶放电可使钢针磁化,甚至更早在1640年,已有人观察到闪电使罗盘的磁针旋转,但到19世纪,丹麦的自然哲学家奥斯特经过多年的研究,他终于在1820年发现电流的磁效应:当电流通过导线时,引起导线近旁的磁针偏转。 奥斯特的发现首先引起法国物理学家的注意,同年即取得一些重要成果,如安培关于载流螺线管与磁铁等效性的实验;阿喇戈关于钢和铁在电流作用下的磁化现象;毕奥和萨伐尔关于长直载流导线对磁极作用力的实验;此外安培还进一步做了一系列电流相互作用的精巧实验. 电流磁效应发现不久,几种不同类型的检流计设计制成,为欧姆发现电路定律提供了条件。1826年,受到傅里叶关于固体中热传导理论的启发,欧姆认为电的传导和热的传导很相似,电源的作用好像热传导中的温差一样。为了确定电路定律,开始他用伏打电堆作电源进行实验,由于当时的伏打电堆性能很不稳定,实验没有成功;后来他改用两个接触点温度恒定因而高度稳定的热电动势做实验,得到电路中的电流强度与他所谓的电源的"验电力"成正比,比例系数为电路的电阻。 杰出的英国物理学家法拉第从事电磁现象的实验研究,对电磁学的发展作出极重要的贡献,其中最重要的贡献是1831年发现电磁感应现象. 法拉第在电磁感应的基础上制出了第一台发电机。此外,他把电现象和其他现象联系起来广泛进行研究,在1833年成功地证明了摩擦起电和伏打电池产生的电相同,1834年发现电解定律,1845年发现磁光效应,并解释了物质的顺磁性和抗磁性,他还详细研究了极化现象和静电感应现象,并首次用实验证明了电荷守恒定律。 麦克斯韦认为变化的磁场在其周围的空间激发涡旋电场;变化的电场引起媒质电位移的变化,电位移的变化与电流一样在周围的空间激发涡旋磁场。麦克斯韦明确地用数学公式把它们表示出来,从而得到了电磁场的普遍方程组——麦克斯韦方程组。法拉第的力线思想以及电磁作用传递的思想在其中得到了充分的体现。 麦克斯韦进而根据他的方程组,得出电磁作用以波的形式传播,电磁波在真空中的传播速度等于电量的电磁单位与静电单位的比值,其值与光在真空中传播的速度相同,由此麦克斯韦预言光也是一种电磁波。 1888年,赫兹根据电容器放电的振荡性质,设计制作了电磁波源和电磁波检测器,通过实验检测到电磁波,测定了电磁波的波速,并观察到电磁波与光波一样,具有偏振性质,能够反射、折射和聚焦。从此麦克斯韦的理论逐渐为人们所接受。麦克斯韦电磁理论通过赫兹电磁波实验的证实,开辟了一个全新的领域——电磁波的应用和研究。

R2 与 R 并联, 其总电阻为
R' = R*R2/(R + R2)
二者并联后再与 R1 串联, 所以 R(以及R2) 上的电压为
U*R'/(R1 + R')
R 的功率为
P = [U R'/(R1 + R')]²/R
=U² * R'²/[R(R1 + R')²]
=U² /[R(R1/R' + 1)²]
= U²/[R(R1/R + R1/R2 + 1)²]
其中的分母为
R(R1/R + R1/R2 + 1)²
= R1²/R +2R1(R1/R2 + 1) + R(R1/R2 + 1)²
中间的一项不用看, 看第一和第三项, 利用 均值不等式 a² + b²≥ 2ab, 在 a= b 时取最小
因此 当 R1²/R = R(R1/R2 + 1)², 原分母取最小, 功率P取最大
这时
R1² = R²(R1/R2 + 1)²
R1 = R (R1/R2 + 1)
R = R1 R2/(R1 + R2)
以上运算中 没有考虑电源内阻 r, 若考虑 把 R1 抵换成 R1 + r 就可以了
R = (R1+r)R2/(R1 + r + R2)

至于你给的补充条件都是不必须的, 也是不正确的. 你所说的答案 (I1R1-I2R2)/I2-I1 也是不正确的. 我估计是练习册上搞错了.

法拉第的电磁感应试验,超导试验,赫兹验证麦克斯韦电磁场理论的试验。

至于视频这些,只能你自己去找了

1822年塞贝克热电效应
1831年法拉第发现电磁感应现象
1888年赫兹检测到电磁波

全重要,中学伏安法测电阻

1600年,英国物理学家吉伯发现,不仅琥珀和煤玉摩擦后能吸引轻小物体,而且相当多的物质经摩擦后也都具有吸引轻小物体的性质,他注意到这些物质经摩擦后并不具备磁石那种指南北的性质。为了表明与磁性的不同,他采用琥珀的希腊字母拼音把这种性质称为"电的"。
差不多同时,美国的富兰克林做了许多有意义的工作,使得人们对电的认识更加丰富。
18世纪后期开始了电荷相互作用的定量研究。1776年,普里斯特利发现带电金属容器内表面没有电荷,猜测电力与万有引力有相似的规律。1769年,鲁宾孙通过作用在一个小球上电力和重力平衡的实验,第一次直接测定了两个电荷相互作用力与距离二次方成反比。1773年,卡文迪什推算出电力与距离的二次方成反比,他的这一实验是近代精确验证电力定律的雏形。
1785年,库仑设计了精巧的扭秤实验,直接测定了两个静止点电荷的相互作用力与它们之间的距离二次方成反比,与它们的电量乘积成正比。库仑的实验得到了世界的公认,从此电学的研究开始进入科学行列。1811年泊松把早先力学中拉普拉斯在万有引力定律基础上发展起来的势论用于静电,发展了静电学的解析理论。
18世纪后期电学的另一个重要的发展是意大利物理学家伏打发明了电池,在这之前,电学实验只能用摩擦起电机的莱顿瓶进行,而它们只能提供短暂的电流。1780年,意大利的解剖学家伽伐尼偶然观察到与金属相接触的蛙腿发生抽动。他进一步的实验发现,若用两种金属分别接触蛙腿的筋腱和肌肉,则当两种金属相碰时,蛙腿也会发生抽动。
1792年,伏打对此进行了仔细研究之后,认为蛙腿的抽动是一种对电流的灵敏反应。电流是两种不同金属插在一定的溶液内并构成回路时产生的,而肌肉提供了这种溶液。基于这一思想,1799年,他制造了第一个能产生持续电流的化学电池,其装置为一系列按同样顺序叠起来的银片、锌片和用盐水浸泡过的硬纸板组成的柱体,叫做伏打电堆。
1822年塞贝克进一步发现,将铜线和一根别种金属(铋)线连成回路,并维持两个接头的不同温度,也可获得微弱而持续的电流,这就是热电效应。
虽然早在1750年富兰克林已经观察到莱顿瓶放电可使钢针磁化,甚至更早在1640年,已有人观察到闪电使罗盘的磁针旋转,但到19世纪,丹麦的自然哲学家奥斯特经过多年的研究,他终于在1820年发现电流的磁效应:当电流通过导线时,引起导线近旁的磁针偏转。
奥斯特的发现首先引起法国物理学家的注意,同年即取得一些重要成果,如安培关于载流螺线管与磁铁等效性的实验;阿喇戈关于钢和铁在电流作用下的磁化现象;毕奥和萨伐尔关于长直载流导线对磁极作用力的实验;此外安培还进一步做了一系列电流相互作用的精巧实验.
电流磁效应发现不久,几种不同类型的检流计设计制成,为欧姆发现电路定律提供了条件。1826年,受到傅里叶关于固体中热传导理论的启发,欧姆认为电的传导和热的传导很相似,电源的作用好像热传导中的温差一样。为了确定电路定律,开始他用伏打电堆作电源进行实验,由于当时的伏打电堆性能很不稳定,实验没有成功;后来他改用两个接触点温度恒定因而高度稳定的热电动势做实验,得到电路中的电流强度与他所谓的电源的"验电力"成正比,比例系数为电路的电阻。
杰出的英国物理学家法拉第从事电磁现象的实验研究,对电磁学的发展作出极重要的贡献,其中最重要的贡献是1831年发现电磁感应现象.
法拉第在电磁感应的基础上制出了第一台发电机。此外,他把电现象和其他现象联系起来广泛进行研究,在1833年成功地证明了摩擦起电和伏打电池产生的电相同,1834年发现电解定律,1845年发现磁光效应,并解释了物质的顺磁性和抗磁性,他还详细研究了极化现象和静电感应现象,并首次用实验证明了电荷守恒定律。
麦克斯韦认为变化的磁场在其周围的空间激发涡旋电场;变化的电场引起媒质电位移的变化,电位移的变化与电流一样在周围的空间激发涡旋磁场。麦克斯韦明确地用数学公式把它们表示出来,从而得到了电磁场的普遍方程组——麦克斯韦方程组。法拉第的力线思想以及电磁作用传递的思想在其中得到了充分的体现。
麦克斯韦进而根据他的方程组,得出电磁作用以波的形式传播,电磁波在真空中的传播速度等于电量的电磁单位与静电单位的比值,其值与光在真空中传播的速度相同,由此麦克斯韦预言光也是一种电磁波。
1888年,赫兹根据电容器放电的振荡性质,设计制作了电磁波源和电磁波检测器,通过实验检测到电磁波,测定了电磁波的波速,并观察到电磁波与光波一样,具有偏振性质,能够反射、折射和聚焦。从此麦克斯韦的理论逐渐为人们所接受。麦克斯韦电磁理论通过赫兹电磁波实验的证实,开辟了一个全新的领域——电磁波的应用和研究。


宜兴市19628575369: 物理 电学史上有哪些重要的实验 -
独戚还原: 1600年,英国物理学家吉伯发现,不仅琥珀和煤玉摩擦后能吸引轻小物体,而且相当多的物质经摩擦后也都具有吸引轻小物体的性质,他注意到这些物质经摩擦后并不具备磁石那种指南北的性质.为了表明与磁性的不同,他采用琥珀的希腊字母...

宜兴市19628575369: 物理 电学史上有哪些重要的实验
独戚还原: 法拉第的电磁感应试验,超导试验,赫兹验证麦克斯韦电磁场理论的试验. 至于视频这些,只能你自己去找了

宜兴市19628575369: ...有四个同学们非常熟悉的实验:a、探究电流与电压的关系;b、探究电流与电阻的关系;c、用伏安法测定值电阻的阻值;d、探究影响电阻大小的因素.关... -
独戚还原:[选项] A. a实验中可用小灯泡替代定值电阻 B. b实验中滑动变阻器的作用是要控制定值电阻两端的电压不变 C. c实验中滑动变阻器的作用是为了方便多次测量求平均值来减小误差 D. d实验中需要采用控制变量法

宜兴市19628575369: 五大电学实验都是什么 -
独戚还原: 探究导体中电流与电压的关系 伏安法测电阻 探究串并联电路的特点 探究电阻大小与哪些因素有关 测小灯泡电功率

宜兴市19628575369: 高中物理电学实验哪些 -
独戚还原: 高中物理的电学实验主要有: 1、测量电阻丝的电阻率. 2、描灯泡的伏安特性曲线. 3、测量电源的电动势和内阻(闭合电路的欧姆定律) 4、测量电表的内阻. 5、多用电表的使用.

宜兴市19628575369: 高考物理所有重点电学实验 -
独戚还原: 提到物理,很多理科生都感觉比起化学、生物可是困难多了,而电学实验更因为难度高而让一些同学在学习中感到头疼,电学实验占据着相当重要的地位,几乎年年考,但每年都有许多考生在此留下了遗憾.虽然考生感觉难度大,但电学实验以...

宜兴市19628575369: 初中物理四大电学实验
独戚还原: 一般电路故障都是串联电路 小灯跑与定值电阻串联:电压表并在小灯泡两端 电流表与小灯泡串联时 1:电压表无示数 电流表有示数 小灯泡短路 2:电压表无示数 电流表无示数 定值电阻断路 3:电压表有示数 电流表无示数 小灯泡断路 4:电压表...

宜兴市19628575369: 电学中很重要的两个实验
独戚还原: 测量小灯泡的电阻,测量小灯泡的电功率

宜兴市19628575369: 电学的五个基本物理量,两个基本电路,三个重要仪器、两个重要实验及电学部分所有公式和应用条件. -
独戚还原:[答案] 五个基本物理量:电压,电流,电阻,电感,电容 两个基本电路: 串联电路,并联电路 三个重要仪器: 电压表,电流表,多用电表 两个重要实验: 伏安法测电阻和测电源的电动势和内电阻 电学公式你可以看课本,记公式没用的关键是理解.

宜兴市19628575369: 人教版初中物理有哪些重点实验. -
独戚还原: 电学五大试验…牛顿第一定律…阿吉米德浮力定律…电磁感应…生的传播…力学三要素…中考主要考前面的

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网