毛细管电泳分析法与经典电泳法相比较关键的技术改变是什么?

作者&投稿:鱼冒 (若有异议请与网页底部的电邮联系)
高效毛细管电泳法的毛细管电泳的发展~

1807~1809年,俄国物理学家F.F.Reuss首次发现黏土颗粒的电迁移现象。1907年,Field和Teague首次用电泳成功分离了白喉毒素和它的抗体。1937年,瑞典科学家将人血清提取的蛋白质混合液放在两段缓冲溶液之间,两端加电压,第一次分离出白蛋白和a、b、g-球蛋白。 Tiselius还制成了第一台电泳仪并进行了第一次自由溶液电泳。他因对电泳技术的发展和应用的巨大贡献而获得1948年诺贝尔化学奖。自由溶液电泳的分离效率受焦耳热的限制,只能在低电场强度下进行操作,使分析时间和分离效率很低。1967年,Hjerten最早提出了用小内径管在高电场下进行自由溶液的电泳。1981年,Jorgenson和Luckas发表了划时代的研究工作,用75um内径石英毛细管进行电泳,电迁移进样,荧光柱上检测丹酰化氨基酸,达到400000块/m理论塔板数的高效率。从此跨入高效毛细管电泳的时代。1984年Terabe等建立了胶束毛细管电动力学色谱。1987年Hjerten建立了毛细管等电聚焦,Cohen和Karger提出了毛细管凝胶电泳。1988~1989年出现了第一批毛细管电泳商品仪器。短短几年内,由于CE符合了以生物工程为代表的生命科学各领域中对多肽、蛋白质(包括酶,抗体)、核苷酸乃至脱氧核糖核酸(DNA)的分离分析要求,得到了迅速的发展。CE是经典电泳技术和现代微柱分离相结合的产物。

毛细管区带电泳是芯片毛细管电泳分离蛋白质的一种最基本的分离模式。它基于不同的蛋白质分子在电场中的迁移速率不同而实现分离,是一种简单、快速的分离方法。采用区带电泳分离模式已成功地分离了多种蛋白质样品。Colyer等采用毛细管电泳芯片,以区带电泳模式对人血清蛋白样品进行了分离,可分辨出4个蛋白质区带(即IgG、转铁蛋白、a-1-抗胰蛋白酶和白蛋白区带,分别用以模拟血清蛋白样品中的7、p、dl和白蛋白区带)。其中蛋白质的荧光标记在分离之后进行,由于荧光染料TNS(2-toluidinonaphtha.1-ene-5-sulfonate)标记血清蛋白的灵敏度较低,所以没能实现实际人血清蛋白样品的5个区带分离。Xiao等采用区带电泳模式,以50 mmoVL磷酸盐缓冲液(pH 2.15)作为工作缓冲液,在通道宽度为30um的聚二甲基硅氧烷(PDMS)芯片中,于35s内实现了细胞色素C和溶菌酶的快速分离。Dodge等设计了集成8个微阀和1个微泵的PDMS芯片,通过微阀微泵实现了对液流的有效控制。他们首先采用区带电泳的分离模式分离牛血清白蛋白和肌红蛋白,然后通过阀的作用将分离后的蛋白质组分分别引入微混合器中酶解,最后对产物进行质谱分析。该工作显示芯片技术可用于质谱分析前复杂蛋白样品的预处理。庄等在石英芯片上以75 mmol/L硼酸盐缓冲液(pH 10.3)作为芯片电泳缓冲体系,分离了免疫球蛋白、O/一1一抗胰蛋白酶、牛血清白蛋白和铁传递蛋白,并对经临床确诊的妊娠高血压症、风湿性心脏病、多发性骨髓瘤患者的尿液样品进行电泳分析,在2 min内得到了与美国Helena电泳系统一致的分析结果。在芯片毛细管电泳分离蛋白质的研究中所要解决的一个重要问题就是通道表面对大分子蛋白质的吸附问题。蛋白质与芯片通道内壁之问的微小吸附效应就会降低蛋白质的分离效率,引起峰形变宽拖尾,影响分离的重现性。在毛细管区带电泳分离模式下,一般采用通道内壁永久改性和缓冲液中加入添加剂进行动态修饰两种方法来抑制蛋白质的吸附。Wu等采用多层88%水解聚丙烯醇(PVA)修饰PDMS芯片,以区带电泳模式有效分离了两种碱性蛋白质(溶菌酶和核糖核酸酶)以及两种典型的酸性蛋白质(牛血清白蛋白和口.乳球蛋白)。该涂层在pH 3~11范围内均可抑制电渗流的产生和蛋白的吸附作用,并且效果稳定,连续运行70次后分离效果仍然很好。该研究组随后又采用自组装方法在PDMS芯片通道表面加工环氧修饰的聚合物涂层抑制蛋白质的吸附,成功地分离了溶菌酶和核糖核酸酶A。Chiem等在运行缓冲液中加入了无机电解质NaCl和中性表面活性剂吐温20来抑制蛋白质的吸附,利用芯片毛细管区带电泳进行了单克隆抗体的分离分析。 ‘ 在蛋白质组学和蛋白质分离研究中,凝胶电泳是广泛使用的分离技术。它是以凝胶等聚合物作为分离介质,利用其网络结构并依据被测组分的分子体积不同而进行分离的一种分离模式。在芯片上采用凝胶电泳模式分离蛋白质,更有利于实现分离操作的高速度和高效率。Yao等采用十二烷基磺酸钠(SDS)凝胶电泳分离模式,对比了芯片SDS毛细管凝胶电泳与常规毛细管凝胶电泳系统分离蛋白质的性能,结果表明前者的分离效率明显优于后者,分离时间也明显低于后者。与常规毛细管凝胶电泳相同,芯片毛细管凝胶电泳常用的筛分介质也分为凝胶和非胶聚合物溶液两种。交联聚丙烯酰胺凝胶是广泛使用的一种凝胶筛分介质,Herr等首次将传统的SDS-聚丙烯酰胺凝胶电泳(SDS·PAGE)分离蛋白质的方法移植到芯片上,采用光聚合的方法在芯片通道内制备浓度为6%的交联聚丙烯酰胺凝胶作为筛分介质,在30S的时间内对相对分子质量(M,)在5 500~39 000之问的5种蛋白质进行分离,分离距离仅为4 mm,分离效率达到理论塔板数4.41×105。该研究组’1引后期又在微通道内制备了浓度为22%的交联聚丙烯酰胺膜用于蛋白质样品的预富集,有效富集了相对分子质量为12 000~205 000的蛋白质分子,并采用浓度为8%的交联聚丙烯酰胺凝胶作为筛分介质进行分离。Agirregabiria等在聚甲基丙烯酸甲酯(PM—MA)芯片上使用SU一8光胶制作微通道,采用浓度为12%的聚丙烯酰胺凝胶作为筛分介质分离蛋白质。随后该研究组又在该芯片上集成金属电极,采用相同的分离模式成功地分离了相对分子质量分别为20 000和97 000的胰蛋白酶抑制剂和磷酸化酶两种蛋白质。然而,交联聚阿烯酰胺凝胶存在制备复杂、不易使用等问题。与其相比,线性聚丙烯酰胺(PLA)、聚乙烯醇(PEG)、聚氧化乙烯(PEO)等非胶筛分介质具有制备简单、使用方便、可以先聚合后注入通道而无需在通道内进行聚合反应等优点,适合在复杂的通道体系中使用,因此在芯片毛细管凝胶电泳中非胶筛分介质得到了广泛的应用。Yao等采用SDS 14·200凝胶缓冲液(Beckman Coulter公司产品)在玻璃芯片上于35 s内分离了相对分子质量在9 000~l 16 000之间的6种蛋白质。Giordano等将NanoOrange染料加入样品和缓冲液中进行蛋白质的动态标记,并对分离缓冲液体系进行了优化,最终选择5%的PEO(M,=100 000)作为筛分介质。该系统对牛血清白蛋白的检出限为500ng/mL,并完成了对实际人血清样品的分离分析。在芯片毛细管凝胶电泳中,通道内壁对蛋白质的吸附仍是需要解决的重要问题。Bousse等使用聚二甲基丙烯酰胺(PDMA)物理涂覆玻璃芯片微通道内壁,将电渗流降低到0.5×10~m zV s .以SDS凝胶电泳的分离模式在40 s内分离了Bio—Rad公司的蛋白质标准样品’,分离效率达到107塔板/m。Nagata等在PMMA芯片中使用了PEG涂层,以5%线性聚丙烯酰胺为筛分介质,在分离长度为3 mm的通道内实现了胰蛋白酶抑制剂、牛血清白蛋白和卢半乳糖苷酶3种蛋白质的高速分离,分离时间仅为8 S 。 芯片等电聚焦分离蛋白质的原理与常规毛细管等电聚焦基本相同,都是依据蛋白质的等电点(pI)不同而进行分离。Hofmann等首次将毛细管等应用于蛋白质分析。Li等在PDMS芯片和聚碳酸酯(PC)芯片上,采用等电聚焦模式分离厂牛血清白蛋白和增强型绿色荧光蛋白(EGFP)。Das等。26 3采用高聚物芯片,在等电聚焦电泳模式下优化了,分离长度及电压条件,最终在长1.9 cm的通道内于1.5 min内分离了绿荧光蛋白和R藻红蛋白,分离电压为500 V。Cui等在PDMS芯片上采用等电聚焦分离模式成功分离了组绿荧光蛋白、异藻青蛋白和藻红蛋白。该作者还报道,通过改变样品和分离介质中添加剂甲基纤维素的浓度,可以改变完成蛋白质分离所需要的通道距离,Tsai等通过采用六甲基二硅氧烷等离子聚合膜修饰玻璃芯片通道的方法抑制蛋白质吸附,在等电聚焦的分离模式下分离了藻青蛋白(pI:4·65)、血红蛋白(pI: 7.0)和细胞色素C(pI:9·6)3种蛋白质混合物,分离在3 min内完成,分离效率为19 600塔板/m。Huang等在进行芯片等电聚焦分离蛋白质时,采用在两性电解质溶液中加入羟甲基纤维素作为添加剂的方法来抑制蛋白质的吸附。 芯片毛细管电泳应用的成功促进了高速高效的芯片二维电泳技术的发展。对于多组分的复杂蛋白质样品,采用传统的一维分离方法通常无法满足要求,需要采用二维分离技术来提高分离效率,增加峰容量。与传统的毛细管电泳系统相比,在芯片上进行二维电泳分离,可以通过设计芯片通道结构实现通道的直接交叉或连通,而无需制作复杂的二维毛细管电泳接口,从而避免了因在接口处存在死体积而导致的谱带扩展现象。在芯片二维电泳分离蛋白质的研究中,第一维分离模式多采用等电聚焦模式。Chen等制作了二维毛细管电泳PDMS芯片,利用第一维的等电聚焦和第二维的凝胶电泳对荧光标记的牛血清白蛋白和碳酸酐酶以及德科萨斯红标记的卵清蛋白进行分离分析。Li等设计了等电聚焦和凝胶电泳联用的二维分离高聚物心4t-片。蛋白质样品在完成第一维的等电聚焦分离后,可在多个并行的通道内完成第二维的凝胶电泳分离。整个分离过程在10 min内完成,峰容量达到1 700。Herr等:”1研制r采用十字通道构型的等电聚焦一自由区带电泳二维芯片系统,芯片通道宽200斗m,深20斗m,待测样品在横向通道中进行等电聚焦分离,分离后的样品区带在电场驱动下进入纵向区带电泳通道中进行第二维分离。系统采用荧光显微镜成像的方法对分离性能进行了评价,5 min内分离的峰容量达到1 300。Wang等通过在PDMS芯片中制作微阀来防止一维等电聚焦和二维凝胶电泳系统之间的分离缓冲液相混合,在20 rain内有效分离了4种标准蛋白质。也有报道在PMMA芯片上进行SDS凝胶电泳和胶束电动毛细管电泳相结合的蛋白质二维电泳分离。该系统在12 min内完成10种蛋白质的分离,峰容量约为l 000。此外,还有一类基于芯片的二维分离系统主要应用于蛋白质酶解物的分离分析。通常第一维分离采用胶束电动毛细管电泳或毛细管电色谱模式,第二维分离采用区带电泳模式2000年,Ramsey课题组。“1首次在玻璃芯片上建立了胶束电动毛细管电泳(第一维)与区带电泳(第二维)结合的二维分离系统,并应用于细胞色素C、核糖核酸酶、d哥L白蛋白等的胰蛋白酶降解产物分离。其后,该课题组对系统进行了改进,加长了第一维电泳通道的长度,并采用细径转角通道来降低扩散,在约15 min内分离了牛血清白蛋白酶解物,峰容量达到4 200。2001年,他们还研制了开管电色谱和区带电泳相结合的芯片二维电泳系统,其电色谱分离部分采用长25 cm的具有十八烷基三甲氧基硅烷涂层的环状通道,区带电泳部分则采用长1.2 am的直形通道,在13 min内实现了届一酪蛋白胰蛋白酶解产物的分离。相对于一维分离芯片,二维芯片分离系统具有很高的分离效率和峰容量,预计会在复杂蛋白质样品的分离上发挥更大的作用。 微流控芯片毛细管电泳系统应用于蛋白质的分离分析具有突出的优越性,特别是在临床检验及现场监测等方面的应用具有良好的发展前景,同时,其对分析仪器的集成化、微型化与便携化的发展也具有重要意义。据文献报道,Renzi等已经研制出手持式的微流控芯片电泳分离蛋白质装置。该装置由电泳芯片、小型激光诱导荧光检测系统以及高压电源等组成,其体积仅为11.5 cm×11.5 cm×19.0 cm,可用于现场分析、床旁医学诊断以及取证分析。近年来,国内已有关于利用芯片毛细管电泳进行临床尿蛋白和脂蛋白检测的报道。最近,Pandey等”川使用Caliper公司和Agilent公司的P200蛋白质芯片来检测微量的白蛋白尿,将蛋白质的电泳分离和荧光检测集成化、自动化,实现了其在临床实验室的应用。目前,很多科研工作者正致力于微流控芯片毛细管电泳与质谱联用技术的研究,以进一步提高系统对复杂样品的分离分析能力。上述系统在蛋白质分离分析及蛋白质组研究中有广阔的应用前景。尤其是对于复杂蛋白质样品的多维分离分析,芯片毛细管电泳以其快速高效的特点,可以作为其中的一维分离方法,显著提高蛋白质的分析通量。相信随着研究的不断深入及相关技术的不断发展,微流控芯片毛细管电泳蛋白质分离技术将日趋成熟,在生化分析、临床诊断和蛋白质组研究领域发挥重要的作用

某些管电池分析法与经典电池法相比较,关键的技术改变是什么?她们的嗯,改变的不同点是在于他们的分析法是不同的,然后他们的结果和构造也是非常不一样的,嗯,技术。他们的技术也是不一样的。

他通过这种经典的方法,然后可以通过这个技术来改变它的相关变量,这个可以通过它的结构来改变。

我晓得人,我就用自己法语经典电影玩的,相比较关键的技术百变组织本本,它的原始球的方法

毛细管电泳分析法它和经典电影分析晚上关键的一种技术改变,这是他在于这个成果的研究方面精确度会更加的高。

毛细管电泳分析法与经典电泳法相比较,关键的技术改变方式。


在毛细血管电泳中,如何选择合适进样方式?
流体力学进样是普适方法,可以通过虹吸、在进样端加压或检测器端抽空等方法来实现,但选择性差,样品及其背景同时被引入毛细管,对后续分离可能产生影响。通过进样时间也可以来改善分离效果,进样时间过短,峰面积太小,分析误差大。进样时间过大,样品超载,进样区带扩散,会引起峰之间的重叠,与提高...

毛细管电泳的应用
这两部分的测定一般需要分离和检测手段相结合。 药物合成中带入的杂质和药物的降解产物通常与药物有相似的结构,而且一般含量很低。CE作为药物的杂质痕量组分分析方法,具有多组分、低含量和同时分离分析能力,故可以用毛细管电泳作为药物杂质的检测手段。CE也可以用于药物生产过程全方位控制与检测,以保证药物...

现代分析方法与技术在药物分析中的应用
现代分析方法与技术在药物分析中有着广泛的应用。这些应用方法包括质谱技术、拉曼光谱技术、红外光谱技术、高效毛细管电泳法等。质谱技术质谱技术 是一种通过离子化样品并测量其质量-电荷比来鉴定和量化样品中化合物的方法。在药物分析中,质谱技术可用于药物的定量、定性分析以及代谢产物的鉴定等。2. 红外...

什么是电泳技术
⑵加样:样品用量依样品浓度、本身性质、染色方法及检测方法等因素决定。对血清蛋白质的常规电泳分析,每cm加样线不超过1μl,相当于60-80μg的蛋白质。⑶电泳:可在室温下进行。电压为25V\/cm,电流为0.4-0.6mA\/cm宽。⑷染色:一般蛋白质染色常使用氨基黑和丽春红,糖蛋白用甲苯胺蓝或过碘酸-Schiff试剂,脂蛋白则...

高效毛细管电泳法的毛细管电泳理论
电渗:液体相对于带电的管壁移动的现象CE所用的石英毛细管柱,在pH>3情况下,其内表面带负电,和溶液接触时形成了一双电层。在高电压作用下,双电层中的水合阳离子引起流体整体地朝负极方向移动的现象叫电渗,粒子在毛细管内电解质中的迁移速度等于电泳和电渗流(EOF)两种速度的矢量和,正离子的运动方向和...

生化的分析方法有哪些
三. 色谱分析法 色谱分析法是一种常用的分离和纯化技术,如高效液相色谱法和气相色谱法。这些技术能够根据生物分子的物理化学性质进行分离,进而进行定性定量分析。在生物化学研究中,色谱分析法常用于蛋白质、代谢物等生物分子的分析和纯化。四、电泳分析法 电泳分析法是基于生物分子在电场作用下的迁移行为...

体内药物分析常用的分析方法有
在体内药物分析中得到广泛应用。根▲分离模式的不同,又可分为毛细管区带电泳(CZE),毛细管凝胶电泳(CEC),毛细管等电聚焦(CIEF),胶束电动毛细管色谱(MEKC)等,CZE是目前应用最广泛的毛细管电泳分离模式。2.联用分析法 目前使用较广泛的为色谱联用分析法和色谱与核磁共振联用分析法。色谱与质谱的联...

某种食物中含黄曲霉素,用最简单的方法怎么检测?
1、薄层分析法(TLC)TLC法是检测黄曲霉素最为经典的方法,也是以前最为常用的方法,至今仍为一些检测机构所用,也是一种国标方法。其原理是针对不同的试样,用适宜的萃取溶剂将黄曲霉素从试样中萃取出来,经柱层析净化后,再在薄板上展开后分离。TLC法设备简单,检测费用低,但操作繁琐、费时,萃取和...

化学分析都有哪些手段?
2.重量分析法:根据物质的化学性质,选择适当的化学反应,将被测组分转化为一种具有固定成分的沉淀或气体形式,经过钝化、干燥、灼烧或吸收剂吸收等一系列处理后准确称量。这种方法被称为重量分析法;3.色谱分析是指根据固定相和流动相分配系数的不同进行分离分析的方法。根据流动相的分子聚集状态,可分为...

解离常数名词解释
测定方法:细管电泳法 毛细管电泳是近年来发展很快的一种新型分析技术。它是以高压电场为驱动力。将毛细管作为分离通道,根据样品中各种组分之间电泳淌度或分配行为的不同而建立起来的一种液相分离分析新技术。张兰等根据弱酸的电离平衡,离子的分布系数,淌度的基本原理和水的离子积常数的知识,在忽略离子...

茂南区15952172008: 毛细管电泳与经典电泳有哪些异同之处 -
田俗凯思: 毛细管电泳可以理解为在一个小管道里面电泳,而经典电泳就是在一个平板子上电泳.这基本原理是相同的.不同点就是,毛细管电泳很微量,可自动化.激光可以穿过去进行检测.并且有条件还可以反复使用.比如DNA测序,以前是用大板跑胶,人工观察结果.现在自动化了,毛细管里面电泳,机器直接给出结果.

茂南区15952172008: 与传统电泳相比高效毛细管电泳的主要改进有哪些 -
田俗凯思: 电泳是电解质中带电粒子在电场作用下,以不同的速度向电荷相反方向迁移的现象.利用这种现象对化学和生物化学样品进行分离的仪器称为电泳仪.从20世纪30~40年代起,相继发展了多种基于抗对流载体的电泳仪(如纸电泳仪和凝胶电泳仪...

茂南区15952172008: 在毛细管中实现电泳分离有什么优点 -
田俗凯思: 在毛细管中实现电泳分离的优点: 1、分析速度快、分离效率高、速度快和灵敏度高,柱效可高达数十万塔板/米、适用于带电样品的分离等. 2、毛细管电泳具有样品消耗少、实验试剂成本低等优点. 3、操作简单、适用面广、是最常用的...

茂南区15952172008: 毛细管电泳法和普通的电泳有什么区别? -
田俗凯思: 毛细管用量少

茂南区15952172008: 为什么毛细管电泳能实现高效分离 -
田俗凯思: 不同分离模式有不同的要求. 最基本的区带电泳,通过调节pH、电压等达到更好的分离度.其次,往缓冲溶液中添加一些表面活性剂以达到更好的分离度,如SDS,环糊精,当表面活性剂达到一定浓度后就成为胶束电动色谱.再次,凝胶电泳…… 太多了,自己看看文献吧,找几篇综述领你入门.

茂南区15952172008: 高效毛细管电泳技术和高效液相色谱技术的区别 -
田俗凯思: 高效毛细管电泳法高(HPCE)又称毛细管电泳(CE),高效液相色谱法(High Performance Liquid Chromatography , HPLC)又称“高压液相色谱”高效毛细管电泳法. CE和HPLC相比, 其相同处在于都是高效分离技术, 操作均可自动化, ...

茂南区15952172008: 毛细管电泳法的特点;优点请 -
田俗凯思:[答案] 【毛细管电泳】是以弹性石英毛细管为分离通道,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的电泳分离分析方法.【所用设备】主要部件有0~30kV可调稳压稳流电源,内径小于100μm(常...

茂南区15952172008: 气相色谱和毛细管电泳的异同之处 -
田俗凯思: 色谱法是根据混合物各组分在互不相溶的两相(固定相和流动相)中,吸附能力,溶解能力,分配系数或其他亲和作用性能的差异而作为分离依据的一种物理化学分离方法. 高效毛细管电泳以高压电场为驱动力,以毛细管为分离通道,依据样品中各组分淌度和分配行为上的差异而实现分离的液相分离技术.

茂南区15952172008: 高效毛细管电泳法的介绍 -
田俗凯思: 高效毛细管电泳法,是近年来发展最快的分析方法之一.是以高压电场为驱动力,以毛细管为分离通道,依据样品中各组分之间淌度和分配行为上的差异而实现分离分析的液相分离方法.

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网