简述DNA重组与分子克隆化基本原理与过程。

作者&投稿:俟松 (若有异议请与网页底部的电邮联系)
简述重组DNA技术的原理及技术。~

广义的遗传工程包括细胞水平上的遗传操作(细胞工程)和分子水平上的遗传操作,即重组DNA技术(有人称之为基因工程)。狭义的遗传工程则专指后者。
重组DNA技术来源于两个方面的基础理论研究——限制性核酸内切酶(简称限制酶)和基因载体(简称载体)。限制酶的研究可以追溯到1952年美国分子遗传学家S.E.卢里亚在大肠杆菌中所发现的一种所谓限制现象——从菌株甲的细菌所释放的噬菌体能有效地感染同一菌株的细菌,可是不能有效地感染菌株乙;少数被感染的菌株乙的细菌所释放的同一噬菌体能有效地感染菌株乙可是不能有效地感染菌株甲。经过长期的研究,美国学者W.阿尔伯在1974年终于对这一现象提出了解释,认为通过噬菌体感染而进入细菌细胞的DNA分子能被细菌识别而分解,细菌本身的DNA则由于已被自己所修饰(甲基化)而免于被分解。但有少数噬菌体在没有被分解以前已被修饰了,这些噬菌体经释放后便能有效地感染同一菌株的细菌。被甲(或乙)这一菌株所修饰的噬菌体只能有效地感染甲(或乙),而不能有效地感染乙(或甲),说明各个菌株对于外来DNA的限制作用常常是专一性的。通过进一步的研究发现这种限制现象是由于细菌细胞中具有专一性的限制性核酸内切酶的缘故。
重组DNA技术中所用的载体主要是质粒和温和噬菌体(见转导)两类,而在实际应用中的载体几乎都是经过改造的质粒或温和噬菌体。英国微生物遗传学家W.海斯和美国微生物遗传学家J.莱德伯格等在1952年首先认识到大肠杆菌的F因子(见细菌接合)是染色体外的遗传因子。1953年法国学者P.弗雷德里克等发现大肠杆菌产生大肠杆菌素这一性状为一种染色体外的大肠杆菌素因子所控制。1957年日本学者发现了抗药性质粒。后两类质粒都是在遗传工程中广泛应用的质粒。
重组DNA技术中广泛应用的噬菌体是大肠杆菌的温和噬菌体λ,它是在1951年由美国学者E.莱德伯格等发现的。到70年代初,生物化学研究的进展也为重组DNA技术奠定了基??972年美国的分子生物学家P.伯格等将动物病毒SV40的DNA与噬菌体P22的DNA连接在一起,构成了第一批重组体DNA分子。1973年美国的分子生物学家S.N.科恩等又将几种不同的外源DNA插入质粒pSC101的DNA中,并进一步将它们引入大肠杆菌中,从而开创了遗传工程的研究。

1、起始阶段:解旋酶在局部展开双螺旋结构的DNA分子为单链,引物酶辨认起始位点,以解开的一段DNA为模板,按照5'到3'方向合成RNA短链。形成RNA引物。
2、DNA片段的生成:在引物提供了3'-OH末端的基础上,DNA聚合酶催化DNA的两条链同时进行复制过程,由于复制过程只能由5'->3'方向合成,因此一条链能够连续合成,另一条链分段合成,其中每一段短链成为冈崎片段(Okazaki fragments)。
3、RNA引物的水解:当DNA合成一定长度后,DNA聚合酶水解RNA引物,补填缺口。
4、DNA连接酶将DNA片段连接起来,形成完整的DNA分子。
5、最后DNA新合成的片段在旋转酶的帮助下重新形成螺旋状。

扩展资料:

DNA复制的特点
1、半保留复制:DNA在复制时,以亲代DNA的每一股作模板,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一股亲代DNA链,这种现象称为DNA的半保留复制。DNA以半保留方式进行复制,是在1958年由M. Meselson 和 F. Stahl 所完成的实验所证明。
2、有一定的复制起始点:DNA在复制时,需在特定的位点起始,这是一些具有特定核苷酸排列顺序的片段,即复制起始点(复制子)。在原核生物中,复制起始点通常为一个,而在真核生物中则为多个。
3、需要引物(primer):DNA聚合酶必须以一段具有3'端自由羟基(3'-OH)的RNA作为引物,才能开始聚合子代DNA链。RNA引物的大小,在原核生物中通常为50~100个核苷酸,而在真核生物中约为10个核苷酸。
4、双向复制:DNA复制时,以复制起始点为中心,向两个方向进行复制。但在低等生物中,也可进行单向复制。
5、半不连续复制:由于DNA聚合酶只能以5'→3'方向聚合子代DNA链,因此两条亲代DNA链作为模板聚合子代DNA链时的方式是不同的。
参考资料来源:百度百科 脱氧核糖核酸
参考资料来源:百度百科 DNA复制

从真核生物的组织或细胞中提取mRNA,通过酶促反应逆转录合成cDNA的第一链和第二链,将双链cDNA和载体连接,然后转化扩增, 即可获得cDNA文库,构建的cDNA文库可用于真核生物基因的结构、表达和调控的分析;比较cDNA和相应基因组DNA序列差异可确定内含子存在和了解转录后加工等一系列问题。总之cDNA的合成和克隆已成为当今真核分子生物学的基本手段。自70年代中叶首例cDNA克隆问世以来,已发展了许多种提高cDNA合成效率的方法,并大大改进了载体系统,目前cDNA合成试剂已商品化。cDNA合成及克隆的基本步骤包括用反转录酶合成cDNA第一链,聚合酶合成cDNA第二链,加入合成接头以及将双链DNA克隆到于适当载体(噬菌体或质粒)。   一、RNA制备  模板mRNA的质量直接影响到cDNA合成的效率。由于mRNA分子的结构特点,容易受RNA酶的攻击反应而降解,加上RNA酶极为稳定且广泛存在,因而在提取过程中要严格防止RNA酶的污染,并设法抑制其活性,这是本实验成败的关键。所有的组织中均存在RNA酶,人的皮肤、手指、试剂、容器等均可能被污染,因此全部实验过程中均需戴手套操作并经常更换(使用一次性手套)。所用的玻璃器皿需置于干燥烘箱中200℃烘烤2小时以上。凡是不能用高温烘烤的材料如塑料容器等皆可用0.1%的焦碳酸二乙酯(DEPC)水溶液处理,再用蒸馏水冲净。DEPC是RNA酶的化学修饰剂,它和RNA酶的活性基团组氨酸的咪唑环反应而抑制酶活性。DEPC与氨水溶液混合会产生致癌物,因而使用时需小心。试验所用试剂也可用DEPC处理,加入DEPC至0.1%浓度,然后剧烈振荡10分钟,再煮沸15分钟或高压灭菌以消除残存的DEPC,否则DEPC也能和腺嘌呤作用而破坏mRNA活性。但DEPC能与胺和巯基反应,因而含Tris和DTT的试剂不能用DEPC处理。Tris溶液可用DEPC处理的水配制然后高压灭菌。配制的溶液如不能高压灭菌,可用DEPC处理水配制,并尽可能用未曾开封的试剂。除DEPC外,也可用异硫氰酸胍、钒氧核苷酸复合物、RNA酶抑制蛋白等。此外,为了避免mRNA或cDNA吸附在玻璃或塑料器皿管壁上,所有器皿一律需经硅烷化处理。  细胞内总RNA制备方法很多,如异硫氰酸胍热苯酚法等。许多公司有现成的总RNA提取试剂盒,可快速有效地提取到高质量的总RNA。分离的总RNA可利用mRNA 3'末端含有多聚(A)+ 的特点,当RNA流经oligo (dT)纤维素柱时,在高盐缓冲液作用下,mRNA被特异的吸附在oligo(dT)纤维素上,然后逐渐降低盐浓度洗脱,在低盐溶液或蒸馏水中,mRNA被洗下。经过两次oligo(dT)纤维素柱,可得到较纯的mRNA。纯化的mRNA在70%乙醇中-70℃可保存一年以上。   二、cDNA第一链的合成  所有合成cDNA第一链的方法都要用依赖于RNA的DNA聚合酶(反转录酶)来催化反应。目前商品化反转录酶有从禽类成髓细胞瘤病毒纯化到的禽类成髓细胞病毒(AMV)逆转录酶和从表达克隆化的Moloney鼠白血病病毒反转录酶基因的大肠杆菌中分离到的鼠白血病病毒(MLV)反转录酶。AMV反转录酶包括两个具有若干种酶活性的多肽亚基,这些活性包括依赖于RNA的DNA合成,依赖于DNA的 DNA合成以及对DNA:RNA杂交体的RNA部分进行内切降解(RNA酶H活性)。MLV反转录酶只有单个多肽亚基,兼备依赖于RNA和依赖于DNA的DNA合成活性,但降解RNANA杂交体中的RNA的能力较弱,且对热的稳定性较AMV反转录酶差。MLV反转录酶能合成较长的cDNA(如大于2-3kb)。AMV反转录酶和MLV反转录酶利用RNA模板合成cDNA时的最适pH值,最适盐浓度和最适温室各不相同,所以合成第一链时相应调整条件是非常重要。   AMV反转录酶和MLV反转录酶都必须有引物来起始DNA的合成。cDNA合成最常用的引物是与真核细胞mRNA分子3'端poly(A)结合的12-18核苷酸长的oligo(dT)。  三、cDNA第二链的合成  cDNA第二链的合成方法有以下几种:   (1) 自身引导法 合成的单链cDNA 3'端能够形成一短的发夹结构,这就为第二链的合成提供了现成的引物,当第一链合成反应产物的DNA:RNA杂交链变性后利用大肠杆菌DNA聚合酶Ⅰ Klenow片段或反转录酶合成cDNA第二链,最后用对单链特异性的S1核酸酶消化该环,即可进一步克隆。但自身引导合成法较难控制反应,而且用S1核酸酶切割发夹结构时无一例外地将导致对应于mRNA 5'端序列出现缺失和重排,因而该方法目前很少使用。   (2) 置换合成法 该方法利用第一链在反转录酶作用下产生的cDNA:mRNA杂交链不用碱变性,而是在dNTP存在下,利用RNA酶H在杂交链的mRNA链上造成切口和缺口。从而产生一系列RNA引物,使之成为合成第二链的引物,在大肠杆菌DNA聚合酶Ⅰ的作用下合成第二链。该反应有3个主要优点: (1) 非常有效; (2) 直接利用第一链反应产物,无须进一步处理和纯化; (3) 不必使用S1核酸酶来切割双链cDNA中的单链发夹环。目前合成cDNA常采用该方法。  四、cDNA的分子克隆   已经制备好的双链cDNA和一般DNA一样,可以插入到质粒或噬菌体中,为此,首先必需连接上接头(Linker),接头可以是限制性内切酶识别位点片段,也可以利用末端转移酶在载体和双链cDNA的末端接上一段寡聚dG和dC或dT和dA尾巴,退火后形成重组质粒,并转化到宿主菌中进行扩增。合成的cDNA也可以经PCR扩增后再克隆入适当载体。


什么叫做DNA重组
3. 内切酶切割。将目的基因与质粒DNA如pBR322质粒,用相同的内切酶分别进行切割,结果它们都会形成相同的切口。4. 连接酶连接。DNA连接酶,常用的有T4。在三磷酸腺苷(ATP)及镁离子存在的条件下,T4连接酶能将切口相同的两种DNA连接起来,形成一个插入目的基因的质粒,叫重组质粒。5. 宿主菌。宿主菌如...

什么是dna重组,常在生物体中什么情况下发生,说明其意义
上的一个基因,在正常情况下,在细胞中最多有几个细胞核内容易被碱性染料染成深色的物质叫做染色体,它的结构是由DNA和蛋白质两种物质组成,DNA是主要的遗传物质.每条染色体包含一个DNA分子,每个DNA分子上有许多基因,基因是DNA上具有特定遗传信息的片段.它们之间的关系:基因位于DNA上,DNA位于染色体上...

高中生物基因重组的概念是什么?
基因重组和DNA重组的不同:基因重组是由于不同DNA链的断裂和连接而产生DNA片段的交换和重新组合,形成新DNA.分子的过程。在人类的生殖细胞中发现的46条染色体发生在生物体内基因的交换或重新组合。包括同源重组、位点特异重组、转座作用和异常重组四大类。是生物遗传变异的一种机制。DNA重组指DNA分子内或分子...

DNA复制、修复和重组之间有什么关系啊!
是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。 重组的本质是基因的重排或交换.即2个DNA分子间或一个DNA分子的不同部位间,通过断裂和重接,交换DNA片段从而改变基因的组合和序列.

DNA的重组方式有哪些
信息交换可以通过复制完成,也可以通过DNA链的断裂和修复完成。在减数分裂和有丝分裂中,重组发生在相似的DNA分子(同源序列)之间。在减数分裂中,非姐妹同源染色体彼此配对,造成非姐妹同源物之间的DNA重组。在减数分裂细胞和有丝分裂细胞中,同源染色体之间的重组是DNA修复常用的机制。基因转换 - 同源序列...

重组DNA技术是如何实现的?
2、目的基因与运载体结合 目的基因与运载体结合的过程实际上是不同来源的DNA重新组合的过程,是基因工程的核心。3、将目的基因导入受体细胞 用人工方法使体外重组的DNA分子转移到受体细胞,主要是借鉴细菌或病毒侵染细胞的途径。目的基因导入受体细胞后,就可以随着受体细胞的繁殖而复制,由于细菌的繁殖速度...

重组DNA技术在现代分子生物学发展中的意义?
中心法则:http:\/\/baike.baidu.com\/view\/15948.html?wtp=tt 由中心法则你可以知道重组的DNA可以表达新的蛋白,表达新的蛋白又可以调控DNA的转绿。我想我能给你提供的东西只有这么多。主要是你说的太大了。不好回答

DNA分子杂交和重组DNA是不是都属于基因工程?
DNA分子杂交和重组DNA是不是都属于基因工程?应该都可以讲是属于工基因工程,只不过DNA分子杂交属于基因工程应用时涉及到的一个原理。基因治疗是把健康的外源基因导入有基因缺陷的细胞中,为什么不是导入有基因缺陷的DNA分子中?基因治疗是指将人的正常基因或有治疗作用的基因通过一定方式导入人体靶细胞以纠正...

生物工程技术包括哪些具体的内容?
DNA重组技术是基因工程的核心技术。重组,顾名思义,就是重新组合,即利用供体生物的遗传物质,或人工合成的基因,经过体外切割后与适当的载体连接起来,形成重组DNA分子,然后将重组DNA分子导入到受体细胞或受体生物构建转基因生物,该种生物就可以按人类事先设计好的蓝图表现出另外一种生物的某种性状。 2、DNA重组技术的物质...

重组DNA(基因工程)的主要步骤。
(3)将人工重组的DNA分子导入能进行正常复制的寄主细胞,从而得到复制:(4)重组体分子的转化子克隆的选择和筛选。[考点]重组DNA的过程。重组DNA也叫基因工程,指指在体外将核酸分子插入病毒、质粒或其他载体分子中,构成遗传物质的重新组合,使之进入原先没有这类分子的寄主细胞内并进行持续稳定的繁殖和...

包头市13047284498: 简述DNA重组与分子克隆化基本原理与过程
和穆东菱: 1.获得目的基因,并进行酶切 获得粘性末端 2.将载体也进行酶切 获得相同的粘性末端 3.将载体与目的基因相连 4.将重组好的载体导入宿主细胞中进行表达克隆的基本过程是先将含有遗传物质的供体细胞的核移 植到去除了细胞核的卵细胞中,利用微电流刺激等使两者融合为一体,然后促使这一新细胞分裂繁殖发育成胚胎,当胚胎发育到一定程度后(罗斯林研究所克隆羊采用的时间约为 6天)再被植入动物子宫中使动物怀孕使可产下与提供细胞 者基因相同的动物.这一过程中如果对供体细胞进行基因改造,那么无性繁殖的动物后代基因就会发生相同的变化.

包头市13047284498: DNA重组与分子克隆化基本原理与过程. -
和穆东菱: 一个完整的DNA克隆过程应包括:①目的基因的获取,②基因载体的选择与构建,③目的基因与载体的拼接,④重组DNA分子导入受体细胞,⑤筛选并无性繁殖含重组分子的受体细胞(转化子). (一)目的基因的获取 目前获取目的基因大...

包头市13047284498: 简述DNA重组与分子克隆化基本原理与过程. -
和穆东菱: 从真核生物的组织或细胞中提取mRNA,通过酶促反应逆转录合成cDNA的第一链和第二链,将双链cDNA和载体连接,然后转化扩增, 即可获得cDNA文库,构建的cDNA文库可用于真核生物基因的结构、表达和调控的分析;比较cDNA和相应...

包头市13047284498: DNA重组技术是怎样的原理 ,高中生物拜托各位大神 -
和穆东菱: 最基本的原理是核酸内切酶的特异切割活性(高中一般只提粘性末端)和连接酶的链接活性,以及碱基互补配对.通过使用特定的核酸内切酶,将目的片段和经改造后的特定载体(质粒、病毒核酸链,其上有特异的切割位点,转录启动、终止序列,以及用于筛选表达的序列)切割,形成能够互补的粘性末端,再通过连接酶进行聚合形成重组子.将重组质粒(以质粒为例)导入感受态细胞,培养,筛选,最后进行表达 采纳哦

包头市13047284498: 分子克隆的实验原理是什么 -
和穆东菱: 将DNA片段(或基因)与载体DNA分子共价连接,然后引入寄主细胞,再筛选获得重组的克隆,按克隆的目的可分为DNA和cDNA克隆两类. cDNA克隆是以mRNA为原材料,经体外反转录合成互补的DNA(cDNA),再与载体DNA分子连接引入...

包头市13047284498: 重组DNA分子的形成利用了什么原理? -
和穆东菱: 不是.看看DNA分子杂交的定义吧.下面有资料, 还有:目的基因与载体结合形成重组DNA是利用限制性内切酶分别对目的基因和载体进行酶切产生粘性末端.然后利用T4连接酶进行连接,形成重组DNA.如果有转进感受态细胞,那么他就可以进行扩增,得到很多个相同的重组DNA.所以这个不是分子杂交.

包头市13047284498: 什么是重组DNA技术? -
和穆东菱: 这是用人工手段对DNA进行改造和重新组合的技术.包括对DNA分子的精细切割、部分序列的去除、新序列的加入和连接、DNA分子扩增、转入细胞的复制繁殖、筛选、克隆、鉴定和序列测定等等,是基因工程技术的核心. 重组DNA技术来源于两个方面的基础理论研究——限制酶和基因载体.重组DNA技术中所用的基因载体主要是质粒和温和噬菌体两类.1972年美国的分子生物学家伯格等将动物病毒SV40的DNA与噬菌体P22的DNA连接在一起,构成了第一批重组体DNA分子.1973年美国的分子生物学家科恩等又将几种不同的外源DNA插入质粒pSC101的DNA中,并进一步将它们引入大肠杆菌中,从而开创了遗传工程的研究.

包头市13047284498: 阳性克隆 - 简述分子克隆的基本步骤,试说明蓝白斑筛选阳性克隆的原理?
和穆东菱: 1.带有目的基因的DNA片段的获得2.重组DNA分子的构建3..重组DNA分子的构建转化和重组克隆的筛选4.特定重组克隆的鉴别

包头市13047284498: DNA的重组连接实验原理和详细步骤方面的文章哪里有啊?
和穆东菱:重组的DNA分子是在T4DNA连接酶的作用下,有Mg2+、ATP存在的连接缓冲液系统中,将上述二种酶切后的DNA分子进行连接. (一)DNA连接酶的作用步骤 1.T4DNA连接酶与辅助因子ATP形成酶-AMP复合物(腺苷酰酶) 2.酶-AMP复合物...

包头市13047284498: DNA重组技术?
和穆东菱: 重组DNA技术是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体内(受体),使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序,也成为分子克隆技术. 基因工程即指重组DNA技术...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网