半导体工作原理

作者&投稿:蒸定 (若有异议请与网页底部的电邮联系)
半导体的导电原理是什么?~

无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关联。

原理:
在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。空穴导电并不是实际运动,而是一种等效。
电子导电时等电量的空穴会沿其反方向运动。它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。
复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子- 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子- 空穴对,载流子密度增加,电阻率减小。

扩展资料:
半导体的应用
一、在无线电收音机(Radio)及电视机(Television)中,作为“讯号放大器/整流器”用。
二、发展「太阳能(Solar Power)」,也用在「光电池(Solar Cell)」中。
三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。
四、半导体致冷器的发展, 它也叫热电致冷器或温差致冷器, 它采用了帕尔贴效应。
参考资料来源:百度百科-半导体

.1 半导体物理基础
本章从半导体器件的工作机理出发,简单介绍半导体物理基础知识,包括本征半导体,杂质半导体,PN结;分别讨论晶体二极管的特性和典型应用电路,双极型晶体管和场效应管的结构,工作机理,特性和应用电路,重点是掌握器件的特性.
媒质
导体:对电信号有良好的导通性,如绝大多数金属,电解液,以及电离气体.
绝缘体:对电信号起阻断作用,如玻璃和橡胶,其电阻率介于108 ~ 1020 ·m.
半导体:导电能力介于导体和绝缘体之间,如硅 (Si) ,锗 (Ge) 和砷化镓 (GaAs) .
半导体的导电能力随温度,光照和掺杂等因素发生显著变化,这些特点使它们成为制作半导体元器件的重要材料.
4.1.1 本征半导体
纯净的硅和锗单晶体称为本征半导体.
硅和锗的原子最外层轨道上都有四个电子,称为价电子,每个价电子带一个单位的负电荷.因为整个原子呈电中性,而其物理化学性质很大程度上取决于最外层的价电子,所以研究中硅和锗原子可以用简化模型代表 .
每个原子最外层轨道上的四个价电子为相邻原子核所共有,形成共价键.共价键中的价电子是不能导电的束缚电子.
价电子可以获得足够大的能量,挣脱共价键的束缚,游离出去,成为自由电子,并在共价键处留下带有一个单位的正电荷的空穴.这个过程称为本征激发.
本征激发产生成对的自由电子和空穴,所以本征半导体中自由电子和空穴的数量相等.
价电子的反向递补运动等价为空穴在半导体中自由移动.因此,在本征激发的作用下,本征半导体中出现了带负电的自由电子和带正电的空穴,二者都可以参与导电,统称为载流子.
自由电子和空穴在自由移动过程中相遇时,自由电子填入空穴,释放出能量,从而消失一对载流子,这个过程称为复合,
平衡状态时,载流子的浓度不再变化.分别用ni和pi表示自由电子和空穴的浓度 (cm-3) ,理论上
其中 T 为绝对温度 (K) ;EG0 为T = 0 K时的禁带宽度,硅原子为1.21 eV,锗为0.78 eV;k = 8.63 10- 5 eV / K为玻尔兹曼常数;A0为常数,硅材料为3.87 1016 cm- 3 K- 3 / 2,锗为1.76 1016 cm- 3 K- 3 / 2.
4.1.2 N 型半导体和 P 型半导体
本征激发产生的自由电子和空穴的数量相对很少,这说明本征半导体的导电能力很弱.我们可以人工少量掺杂某些元素的原子,从而显著提高半导体的导电能力,这样获得的半导体称为杂质半导体.根据掺杂元素的不同,杂质半导体分为 N 型半导体和 P 型半导体.
一,N 型半导体
在本征半导体中掺入五价原子,即构成 N 型半导体.N 型半导体中每掺杂一个杂质元素的原子,就提供一个自由电子,从而大量增加了自由电子的浓度一一施主电离
多数载流子一一自由电子
少数载流子一一空穴
但半导体仍保持电中性

热平衡时,杂质半导体中多子浓度和少子浓度的乘积恒等于本征半导体中载流子浓度 ni 的平方,所以空穴的浓度 pn为

因为 ni 容易受到温度的影响发生显著变化,所以 pn 也随环境的改变明显变化.
自由电子浓度
杂质浓度
二,P 型半导体
在本征半导体中掺入三价原子,即构成 P 型半导体.P 型半导体中每掺杂一个杂质元素的原子,就提供一个空穴,从而大量增加了空穴的浓度一一受主电离
多数载流子一一空穴
少数载流子一一自由电子
但半导体仍保持电中性

而自由电子的浓度 np 为
环境温度也明显影响 np 的取值.
空穴浓度
掺杂浓庹
4.1.3 漂移电流和扩散电流
半导体中载流子进行定向运动,就会形成半导体中的电流.
半导体电流

半导体电流
漂移电流:在电场的作用下,自由电子会逆着电场方向漂移,而空穴则顺着电场方向漂移,这样产生的电流称为漂移电流,该电流的大小主要取决于载流子的浓度,迁移率和电场强度.
扩散电流:半导体中载流子浓度不均匀分布时,载流子会从高浓度区向低浓度区扩散,从而形成扩散电流,该电流的大小正比于载流子的浓度差即浓度梯度的大小.
4.2 PN 结
通过掺杂工艺,把本征半导体的一边做成 P 型半导体,另一边做成 N 型半导体,则 P 型半导体和 N 型半导体的交接面处会形成一个有特殊物理性质的薄层,称为 PN 结.
4.2.1 PN 结的形成
多子扩散
空间电荷区,内建电场和内建电位差的产生
少子漂移
动态平衡
空间电荷区又称为耗尽区或势垒区.在掺杂浓度不对称的 PN 结中,耗尽区在重掺杂一边延伸较小,而在轻掺杂一边延伸较大.
4.2.2 PN 结的单向导电特性
一,正向偏置的 PN 结
正向偏置
耗尽区变窄
扩散运动加强,漂移运动减弱
正向电流
二,反向偏置的 PN 结
反向偏置
耗尽区变宽
扩散运动减弱,漂移运动加强
反向电流
PN 结的单向导电特性:PN 结只需要较小的正向电压,就可以使耗尽区变得很薄,从而产生较大的正向电流,而且正向电流随正向电压的微小变化会发生明显改变.而在反偏时,少子只能提供很小的漂移电流,并且基本上不随反向电压而变化.
4.2.3 PN 结的击穿特性
当 PN 结上的反向电压足够大时,其中的反向电流会急剧增大,这种现象称为 PN 结的击穿.
雪崩击穿:反偏的 PN 结中,耗尽区中少子在漂移运动中被电场作功,动能增大.当少子的动能足以使其在与价电子碰撞时发生碰撞电离,把价电子击出共价键,产生一对自由电子和空穴,连锁碰撞使得耗尽区内的载流子数量剧增,引起反向电流急剧增大.雪崩击穿出现在轻掺杂的 PN 结中.
齐纳击穿:在重掺杂的 PN 结中,耗尽区较窄,所以反向电压在其中产生较强的电场.电场强到能直接将价电子拉出共价键,发生场致激发,产生大量的自由电子和空穴,使得反向电流急剧增大,这种击穿称为齐纳击穿.
PN 结击穿时,只要限制反向电流不要过大,就可以保护 PN 结不受损坏.
PN 结击穿
4.2.4 PN 结的电容特性
PN 结能够存贮电荷,而且电荷的变化与外加电压的变化有关,这说明 PN 结具有电容效应.
一,势垒电容
CT0为 u = 0 时的 CT,与 PN 结的结构和掺杂浓度等因素有关;UB为内建电位差;n 为变容指数,取值一般在 1 / 3 ~ 6 之间.当反向电压 u 绝对值增大时,CT 将减小.
二,扩散电容
PN 结的结电容为势垒电容和扩散电容之和,即 Cj = CT + CD.CT 和 CD 都随外加电压的变化而改变,所以都是非线性电容.当 PN 结正偏时,CD 远大于 CT ,即 Cj CD ;反偏的 PN 结中,CT 远大于 CD,则 Cj CT .
4.3 晶体二极管
二极管可以分为硅二极管和锗二极管,简称为硅管和锗管.
4.3.1 二极管的伏安特性一一 指数特性
IS 为反向饱和电流,q 为电子电量 (1.60 10- 19C) ;UT = kT/q,称为热电压,在室温 27℃ 即 300 K 时,UT = 26 mV.
一,二极管的导通,截止和击穿
当 uD > 0 且超过特定值 UD(on) 时,iD 变得明显,此时认为二极管导通,UD(on) 称为导通电压 (死区电压) ;uD 0.7 V时,D处于导通状态,等效成短路,所以输出电压uo = ui - 0.7;当ui 0时,D1和D2上加的是正向电压,处于导通状态,而D3和D4上加的是反向电压,处于截止状态.输出电压uo的正极与ui的正极通过D1相连,它们的负极通过D2相连,所以uo = ui;当ui 0时,二极管D1截止,D2导通,电路等效为图 (b) 所示的反相比例放大器,uo = - (R2 / R1)ui;当ui 0时,uo1 = - ui,uo = ui;当ui 2.7 V时,D导通,所以uo = 2.7 V;当ui < 2.7 V时,D截止,其支路等效为开路,uo = ui.于是可以根据ui的波形得到uo的波形,如图 (c) 所示,该电路把ui超出2.7 V的部分削去后进行输出,是上限幅电路.
[例4.3.7]二极管限幅电路如图 (a) 所示,其中二极管D1和D2的导通电压UD(on) = 0.3 V,交流电阻rD 0.输入电压ui的波形在图 (b) 中给出,作出输出电压uo的波形.
解:D1处于导通与截止之间的临界状态时,其支路两端电压为 - E - UD(on) = - 2.3 V.当ui - 2.3 V时,D1截止,支路等效为开路,uo = ui.所以D1实现了下限幅;D2处于临界状态时,其支路两端电压为 E + UD(on) = 2.3 V.当ui > 2.3 V时,D2导通,uo = 2.3 V;当ui < 2.3 V时,D2截止,支路等效为开路,uo = ui.所以D2实现了上限幅.综合uo的波形如图 (c) 所示,该电路把ui超出 2.3 V的部分削去后进行输出,完成双向限幅.
限幅电路的基本用途是控制输入电压不超过允许范围,以保护后级电路的安全工作.设二极管的导通电压UD(on) = 0.7 V,在图中,当 - 0.7 V < ui 0.7 V时,D1导通,D2截止,R1,D1和R2构成回路,对ui分压,集成运放输入端的电压被限制在UD(on) = 0.7 V;当ui < - 0.7 V时,D1截止,D2导通, R1,D2和R2
构成回路,对ui分压,集成运放输入端的电压被限制在 - UD(on) = - 0.7 V.该电路把ui限幅到 0.7 V到 - 0.7 V之间,保护集成运放.
图中,当 - 0.7 V < ui 5.7 V时,D1导通,D2截止,A / D的输入电压被限制在5.7 V;当ui < - 0.7 V时,D1截止,D2导通,A / D的输入电压被限制在 - 0.7 V.该电路对ui的限幅范围是 - 0.7 V到 5.7 V.
[例4.3.8]稳压二极管限幅电路如图 (a) 所示,其中稳压二极管DZ1和DZ2的稳定电压UZ = 5 V,导通电压UD(on) 近似为零.输入电压ui的波形在图 (b) 中给出,作出输出电压uo的波形.
解:当 | ui | 1 V时,DZ1和DZ2一个导通,另一个击穿,此时反馈电流主要流过稳压二极管支路,uo稳定在 5 V.由此得到图 (c) 所示的uo波形.
图示电路为单运放弛张振荡器.其中集成运放用作反相迟滞比较器,输出电源电压UCC或 - UEE,R3隔离输出的电源电压与稳压二极管DZ1和DZ2限幅后的电压.仍然认为DZ1和DZ2的稳定电压为UZ,而导通电压UD(on) 近似为零.经过限幅,输出电压uo可以是高电压UOH = UZ或低电压UOL = - UZ.
三,电平选择电路
[例4.3.9]图 (a) 给出了一个二极管电平选择电路,其中二极管D1和D2为理想二极管,输入信号ui1和ui2的幅度均小于电源电压E,波形如图 (b) 所示.分析电路的工作原理,并作出输出信号uo的波形.
解:因为ui1和ui2均小于E,所以D1和D2至少有一个处于导通状态.不妨假设ui1 ui2时,D2导通,D1截止,uo = ui2;只有当ui1 = ui2时,D1和D2才同时导通,uo = ui1 = ui2.uo的波形如图 (b) 所示.该电路完成低电平选择功能,当高,低电平分别代表逻辑1和逻辑0时,就实现了逻辑"与"运算.
四,峰值检波电路
[例4.3.10]分析图示峰值检波电路的工作原理.
解:电路中集成运放A2起电压跟随器作用.当ui > uo时,uo1 > 0,二极管D导通,uo1对电容C充电,此时集成运放A1也成为跟随器,uo = uC ui,即uo随着ui增大;当ui < uo时,uo1 < 0,D截止,C不放电,uo = uC保持不变,此时A1是电压比较器.波形如图 (b) 所示.电路中场效应管V用作复位开关,当复位信号uG到来时直接对C放电,重新进行峰值检波.
4.4 双极型晶体管
NPN型晶体管
PNP型晶体管
晶体管的物理结构有如下特点:发射区相对基区重掺杂;基区很薄,只有零点几到数微米;集电结面积大于发射结面积.
一,发射区向基区注入电子
_ 电子注入电流IEN,
空穴注入电流IEP_
二,基区中自由电子边扩散
边复合
_ 基区复合电流IBN_
三,集电区收集自由电子
_ 收集电流ICN
反向饱和电流ICBO
4.4.1 晶体管的工作原理
晶体管三个极电流与内部载流子电流的关系:
共发射极直流电流放大倍数:
共基极直流电流放大倍数:
换算关系:
晶体管的放大能力参数
晶体管的极电流关系
描述:
描述:
4.4.2 晶体管的伏安特性
一,输出特性
放大区(发射结正偏,集电结反偏 )
共发射极交流电流放大倍数:
共基极交流电流放大倍数:
近似关系:
恒流输出和基调效应
饱和区(发射结正偏,集电结正偏 )
_ 饱和压降 uCE(sat) _
截止区(发射结反偏,集电结反偏 )
_极电流绝对值很小
二,输入特性
当uBE大于导通电压 UBE(on) 时,晶体管导通,即处于放大状态或饱和状态.这两种状态下uBE近似等于UBE(on) ,所以也可以认为UBE(on) 是导通的晶体管输入端固定的管压降;当uBE 0,所以集电结反偏,假设成立,UO = UC = 4 V;当UI = 5 V时,计算得到UCB = - 3.28 V < 0,所以晶体管处于饱和状态,UO = UCE(sat) .
[例4.4.2]晶体管直流偏置电路如图所示,已知晶体管的UBE(on) = - 0.7 V, = 50.判断晶体管的工作状态,并计算IB,IC和UCE.
解:图中晶体管是PNP型,UBE(on) = UB - UE = (UCC - IBRB) - IERE = UCC - IBRB - (1+b)IBRE = - 0.7 V,得到IB = - 37.4 A < 0,所以晶体管处于放大或饱和状态.IC = bIB = - 1.87 mA,UCB = UC - UB = (UCC - ICRC) - (UCC - IBRB) = - 3.74 V | UGS(off) | )
uGS和iD为平方率关系.预夹断导致uDS对iD的控制能力很弱.
可变电阻区(| uGS | | UGS(off) |且
| uDG | | UGS(off) |)
iD = 0
三,转移特性
预夹断
4.5.2 绝缘栅场效应管
绝缘栅场效应管记为MOSFET,根据结构上是否存在原始导电沟道,MOSFET又分为增强型MOSFET和耗尽型MOSFET.
一,工作原理
UGS = 0 ID = 0
UGS > UGS(th) 电场 反型层 导电沟道 ID > 0
UGS控制ID的大小
N沟道增强型MOSFET
N沟道耗尽型MOSFET在UGS = 0时就存在ID = ID0.UGS的增大将增大ID.当UGS - UGS(off) ,所以该场效应管工作在恒流区.图 (b) 中是P沟道增强型MOSFET,UGS = - 5 (V) - UGS(th) ,所以该场效应管工作在可变电阻区.
解:图 (a) 中是N沟道JFET,UGS = 0 > UGS(off) ,所以该场效应管工作在恒流区或可变电阻区,且ID
一,方波,锯齿波发生器
4.5.5 场效应管应用电路举例
集成运放A1构成弛张振荡器,A2构成反相积分器.振荡器输出的方波uo1经过二极管D和电阻R5限幅后,得到uo2,控制JFET开关V的状态.当uo1为低电平时,V打开,电源电压E通过R6对电容C2充电,输出电压uo随时间线性上升;当uo1为高电平时,V闭合,C2通过V放电,uo瞬间减小到零.
二,取样保持电路
A1和A2都构成跟随器,起传递电压,隔离电流的作用.取样脉冲uS控制JFET开关V的状态.当取样脉冲到来时,V闭合.此时,如果uo1 > uC则电容C被充电,uC很快上升;如果uo1 < uC则C放电,uC迅速下降,这使得uC = uo1,而uo1 = ui,uo = uC ,所以uo = ui.当取样脉冲过去时,V打开,uC不变,则uo保持取样脉冲最后瞬间的ui值.
三,相敏检波电路

因此前级放大器称为符号电路.
场效管截止
场效管导通
集成运放A2构成低通滤波器,取出uo1的直流分量,即时间平均值uo.uG和ui同频时,uo取决于uG和ui的相位差,所以该电路称为相敏检波电路.
NPN晶体管
结型场效应管JEFT
增强型NMOSEFT
指数关系
平方律关系
场效应管和晶体管的主要区别包括:
晶体管处于放大状态或饱和状态时,存在一定的基极电流,输入电阻较小.场效应管中,JFET的输入端PN结反偏,MOSFET则用SiO2绝缘体隔离了栅极和导电沟道,所以场效应管的栅极电流很小,输入电阻极大.
晶体管中自由电子和空穴同时参与导电,主要导电依靠基区中非平衡少子的扩散运动,所以导电能力容易受外界因素如温度的影响.场效应管只依靠自由电子和空穴之一在导电沟道中作漂移运动实现导电,导电能力不易受环境的干扰.
场效应管的源极和漏极结构对称,可以互换使用.晶体管虽然发射区和集电区是同型的杂质半导体,但由于制作工艺不同,二者不能互换使用.

元素周期表左边的元素一般为导体因为原子最外层电子少,不稳定极易容易失去电子元素周期表右边的元素一般为绝缘体因为原子最外层一般接近8个电子,非常稳定所以很难失去电子介于两者之间的为半导体



简单说:绝缘体,不导电,只能当绝缘体用。导体,导电,只能当导体用。半导体,可导电可不导电,一会儿导电一会儿不导电,可以由外界控制,所以适合作为传感器、放大电路、控制电路等。


无刷电机,霍尔的工作原理?
霍尔元件是一种磁敏元件,它的工作原理是当电流通过一个位于磁场中的导体时,磁场会对导体中的电子产生一个垂直于电子运动方向的作用力,这个作用力会推动电子在垂直于磁场和电流的方向上移动,这个现象被称为霍尔效应。无刷电机是一种电机,它使用电子换向器代替了传统的机械换向器,消除了电刷和换向器的...

牵引电动机的工作原理是什么呢?
电动机由两部分组成:能够转动的线圈和固定不动的磁体。在电动机里,能够转动的部分叫做转子,固定不动的部分叫作定子。电动机工作时,转子在定子中飞快地转动。电动机的工作原理 电动机的工作原理是通电导体在磁场中受力而运动,在转动过程中,当线圈平面与磁感线垂直时,线圈受到平衡力的作用而处于静止...

霍尔元件的工作原理。
霍尔元件工作原理是当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。半导体中的霍尔效应比金属箔片中更为明显,而铁磁金属在居里温度以下将呈极强的霍尔效应。由于通电导线周围存在磁场,其大小和导线中的电流成正比,故可以利用霍尔元件测量出磁场,就可确定导线...

k型热电偶工作原理
热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端...

天线原理
工作原理:当导体上通以高频电流时,在其周围空间会产生电场 与磁场。按电磁场在空间的分布特性,可分为近区,中间区, 远区。设R为空间一点距导体的距离,在时的区域称近区,在该区内的电磁场与导体中电流,电压有紧密的联系。远区内电磁场能离开导体向空间传播,它的变化相对于导体上的电流电压...

5.电阻应变片的工作原理是基于导体荷半导体材料的电阻应变效应和压电...
电阻应变效应是指当导体材料受到外部应变或压力时,其电阻值发生变化的效应。这种效应是由于导体材料的几何形状、晶格结构或局部电子密度的变化导致的。压电效应则是指当某些特定的材料受到外部应力时,产生电荷分布不均匀,从而在材料内部形成电势差的效应。两者是不同的物理效应,电阻应变片的工作原理主要是...

电动机 的工作原理是什么?
电动机的工作原理基于法拉第电磁感应定律和洛伦兹力定律。它利用通电线圈(也就是定子绕组)产生旋转磁场并作用于转子(如鼠笼式闭合铝框)形成磁电动力旋转扭矩。具体来说,定子是固定不动的部分,通常由电磁线圈组成。当通过定子线圈通电时,产生一个磁场。这个磁场可以是直流电流产生的恒定磁场,也可以是...

电磁感应信号发生器工作原理
电磁感应信号发生器的工作原理,简而言之,是利用电磁感应原理来产生和传输电信号。来说,电磁感应信号发生器主要依赖于法拉第电磁感应定律进行工作。根据法拉第电磁感应定律,当一个导体回路在变化的磁场中时,会在回路中产生感应电动势。这种感应电动势的大小与磁通量变化的速率成正比。信号发生器中的线圈和...

特斯拉线圈原理是什么?(通俗易懂点)通电导体是什么?为什么能有如此大的...
特斯拉线圈的线路和原理都非常简单,但要将它调整到与环境完美的共振很不容易原理为把一个线圈连接在电源上传输能量作为发射器,另一个线圈连着灯泡,作为能量接收器。通电后,发射器能够以10兆赫兹的频率振动,但它并不向外发射电磁波。后来,特斯拉试图利用地球本身和大气电离层为导体来实现无线输电,为此在...

热电偶工作原理是什么?
热电偶工作原理 热电偶的基本工作原理是热电动势效应。将两种不同的导体(金属或合金)A和B组成一个闭合回路,若两接触点温度(T,T0)不同,则回路中有一定大小电流,该现象称为热电动势效应或塞贝克效应,通常称为热电效应。回路中的电势称为热电势或塞贝克电势,用Eab(T,T0)表示。两种不同的...

平邑县18819061146: 半导体基本原理 -
守侨清眩: 电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质.半导体室温时电阻率约在10E-5~10E7欧·米之间,温度升高时电阻率指数则减小.半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类.锗和硅是最常用的元素...

平邑县18819061146: 半导体工作原理 -
守侨清眩: 顾名思义!半导体是介于导体和绝缘体之间的材料!我门常用的多是硅和锗! 半导体的原理和构造你可参阅"基础半导体"一书!在此不赘述! 从最简单的半导体二极管到今天的超大规模集成电路,半导体才走过了几十年! 过去一只单管的体积里今天可做进百万只元件!若和电子真空管来比那就更惊人了! 以一套早期计算机来说!一座六层楼高的设备今天也就是一只香烟盒了! 半导体的单元特性是做成不同特性的二极管,三极管和各种派生元器件! 电路里的所有整流,稳压,检波,发光,接收,放大,运算,储存都需要它!

平邑县18819061146: 半导体的原理 -
守侨清眩: 导电能力介于导体与绝缘体之间的物质.其导电的原理就是在纯净的半导体中通过掺杂后,得到两种半导体,即N型与P型半导体.由于掺杂,在两类半导体内产生了两种参与导电的元素即:自由电子和空穴.如果把两类掺杂半导体通过特殊工艺结合在一体,就会出现电子与空穴的扩散、漂移和复合等运动现象,这种运动现象导致在两类半导体结合部位形成pn结.pn结是构成电子器件的基础.其具有很多的特性.如我们现在用的二极管、三极管、场效应管、集成电路等都是.不好意思,我说的不全,如果你没有电子技术学习的基础,你会听不懂.建议你如果想学好,就得去系统的学习. 后面还有很多知识,祝你学习好.

平邑县18819061146: 半导体导电原理 -
守侨清眩: 由于N 型半导体是5 价的磷镶嵌在以4 价为主体硅晶体中,有多出的电子.而在P 型半导体中是3 价的硼在以硅为主体的结构元连接中,顶替了一个硅原子的位置,在整体上有缺少电子的趋势.把这两种晶体紧密结合:N 型半导体中多出的电子...

平邑县18819061146: 半导体导电原理(半导体导电原理和金属导电原理有什么区别)
守侨清眩: 1、在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一...

平邑县18819061146: 半导体的导电原理是什么? -
守侨清眩: 半导体是指导电能力介于金属和绝缘体之间的固体材料.按内部电子结构区分,半导体与绝缘体相似,它们所含的价电子数恰好能填满价带,并由禁带和上面的导带隔开.半导体与绝缘体的区别是禁带较窄(这就是关键!现在很多曾经被划分为...

平邑县18819061146: 半导体工作原理看了几天,还是不了解 -
守侨清眩: 空穴移动走了之后就移动来了一个电子,也是相对移动的一个道理. 一个空穴走了之后,就马上会来一个电子, 空穴是+ 电子是— 相互吸引的一个过程 . 另外你再看看有关半导体的单向导电性吧. 会对你有帮助,这些东西部能死记硬背,要理解着去记忆,否则及时记住了,没过多久也就忘记了.你这人啊,你有悬赏分吗 ? 没有吧, 回答了,还这样,好心不讨好.

平邑县18819061146: 半导体三极管工作原理 -
守侨清眩: 其工作原理分为两个部份:一是光电转换;二是光电流放大. 光电转换过程与一般光电二极管相同,在集—基PN结区内进行.光激发产生的电子—空穴对在反向偏置的PN结内电场的作用下,电子流向集电区被集电极所收集,而空穴流向基区与正向偏置的发射结发射的电子复合,形成基极电流,基极电流将被集电结放大,这与一般半导体三极管的放大原理相同.不同的是一般三极管是由基极向发射结注入空穴载流子,控制发射极的扩散电流,而光电三极管是由注入到发射结的光生电流控制的.

平邑县18819061146: 半导体的导电原理 -
守侨清眩: 单晶硅(纯净)在室温下电阻率是很大的,也就是说单位半导体的电阻很大. 但是,若按百万分之一的比例掺入少量杂质(如磷)后,其电阻率急剧下降,并且几乎降低了一百万倍.导电时,磷原子最外层有5个价电子,其中4个价电子分别与邻近4个硅原子形成共价键结构,另外一个自由电子导电,所以它是发生了化学反应,产生了共价键. 不知道对不对啊.

平邑县18819061146: 功率半导体器件的工作原理 -
守侨清眩: 功率半导体器件,也叫电力电子器件均具有导通和阻断两种工作特性.原理是:通过控制门极信号控制功率半导体器件的导通和关断.半控型器件,只可控制其导通,不可控制其关断.全控型器件,导通和关断都可控制.

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网