费马小定理 证明

作者&投稿:徭砍 (若有异议请与网页底部的电邮联系)
如何证明费马小定理~

楼上都是用的是欧拉的证明,但是我认为这个证明太长了并且需要有一定的初等数论基础,下面我用归纳法证明。
反向归纳法:设P(n)是含正整数n的命题,如果1.有无穷多的正整数n使得P(n)成立,2.在假定P(k+1)成立的前提下,P(k)成立,那么P(n)对于所有的正整数n均成立。
证明:
令m=lp,则费吗小定理可以变成:(lp)^p-(lp)^p,由于l可以取任意的正整数,所以有无穷多的正整数使得该命题成立。
假定P(k+1)成立,利用二项式定理展开(k+1)^p-(k+1)=(k^p-k)+C(1,p)K^(p-1)+C(2,p)k^(p-1)+........................C(p-1,p)K (C(m,n)表示组合数,不会打请谅解!)
由于p整除于C(m,p),在题设的假定下,p整除于(k+1)^p-(k+1),所以P整除于(K^p-k)即P(k)成立,由反向归纳法可知对于任意的正整数费马小定理均成立。
证毕
相较于楼上的证明这个证明要简洁的多并且要简单得多,回避了欧拉的证明中欧拉定理和简化剩余系的铺垫。

先证明Zn里满足(a,n)=1的所有元素的集合在乘法下构成一个群G。
不妨设a,b∈G,由(a,n)=1,(b,n)=1推出(ab,n)=1,即ab∈G,乘法是闭的。
剩余类乘法是结合的。
显然1是单位元。
又(a,n)=1,所以存在整数s,t使as+nt=1,则as=1(n),且(s,n)=1故a-1=s∈G,这样G是一个群,且o(G)=φ(n)。
根据Lagrange定理,当(a,n)=1时有a^φ(n)=1(mod n)。特别地,n为素数p时,φ(p)=p-1,所以a^(p-1)=1(mod p),两边同时乘以a得a^p=a(mod p) (1)
若p整除a,则(1)显然成立。
证毕。

费马小定理的证明
一、准备知识:
引理1.剩余系定理2
若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当ac≡bc(mod m)时,有a≡b(mod m)
证明:ac≡bc(mod m)可得ac–bc≡0(mod m)可得(a-b)c≡0(mod m)因为(m,c)=1即m,c互质,c可以约去,a–b≡0(mod m)可得a≡b(mod m)
引理2.剩余系定理5
若m为整数且m>1,a[1],a[2],a[3],a[4],…a[m]为m个整数,若在这m个数中任取2个整数对m不同余,则这m个整数对m构成完全剩余系。
证明:构造m的完全剩余系(0,1,2,…m-1),所有的整数必然这些整数中的1个对模m同余。取r[1]=0,r[2]=1,r[3]=2,r[4]=3,…r=i-1,1<i<=m。令(1):a[1]≡r[1](mod m),a[2]≡r[2](mod m),a≡r(mod m)(顺序可以不同),因为只有在这种情况下才能保证集合{a1,a2,a3,a4,…am}中的任意2个数不同余,否则必然有2个数同余。由式(1)自然得到集合{a1,a2,a3,a4,…am}对m构成完全剩余系。
引理3.剩余系定理7
设m是一个整数,且m>1,b是一个整数且(m,b)=1。如果a1,a2,a3,a4,…am是模m的一个完全剩余系,则ba[1],ba[2],ba[3],ba[4],…ba[m]也构成模m的一个完全剩余系。
证明:若存在2个整数ba和ba[j]同余即ba≡ba[j](mod m),根据引理2则有a≡a[j](mod m)。根据完全剩余系的定义和引理4(完全剩余系中任意2个数之间不同余,易证明)可知这是不可能的,因此不存在2个整数ba和ba[j]同余。由引理5可知ba[1],ba[2],ba[3],ba[4],…ba[m]构成模m的一个完全剩余系。
引理4.同余定理6
如果a,b,c,d是四个整数,且a≡b(mod m),c≡d(mod m),则有ac≡bd(mod m)
证明:由题设得ac≡bc(mod m),bc≡bd(mod m),由模运算的传递性可得ac≡bd(mod m)
二、证明过程:
构造素数p的完全剩余系P={1,2,3,4…(p-1)},因为(a,p)=1,由引理3可得A={a,2a,3a,4a,…(p-1)a}也是p的一个完全剩余系。令W=1*2*3*4…*(p-1),显然W≡W(mod p)。令Y=a*2a*3a*4a*…(p-1)a,因为{a,2a,3a,4a,…(p-1)a}是p的完全剩余系,由引理2以及引理4可得a*2a*3a*…(p-1)a≡1*2*3*…(p-1)(mod p)即W*a^(p-1)≡W(modp)。易知(W,p)=1,由引理1可知a^(p-1)≡1(modp)

马小定理
费马小定理是数论中的一个重要定理,其内容为:
假如p是质数,且(a,p)=1,那么 a^(p-1) ≡1(mod p)
[编辑本段]费马小定理的历史
皮埃尔•德•费马于1636年发现了这个定理,在一封1640年10月18日的信中他第一次使用了上面的书写方式。在他的信中费马还提出a是一个质数的要求,但是这个要求实际上是不存在的。与费马小定理相关的有一个中国猜想,这个猜想是中国数学家提出来的,其内容为:当且仅当2^(p-1)≡1(mod p),p是一个质数。
假如p是一个质数的话,则2^(p-1)≡1(mod p)成立(这是费马小定理的一个特殊情况)是对的。但反过来,假如2^(p-1)≡1(mod p)成立那么p是一个质数是不成立的(比如341符合上述条件但不是一个质数)。因此整个来说这个猜想是错误的。一般认为中国数学家在费马前2000年的时候就已经认识中国猜测了,但也有人认为实际上中国猜测是1872年提出的,认为它早就为人所知是出于一个误解。
[编辑本段]费马小定理的证明
一、准备知识:
引理1.剩余系定理2
若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当ac≡bc(mod m)时,有a≡b(mod m)
证明:ac≡bc(mod m)可得ac–bc≡0(mod m)可得(a-b)c≡0(mod m)因为(m,c)=1即m,c互质,c可以约去,a–b≡0(mod m)可得a≡b(mod m)
引理2.剩余系定理5
若m为整数且m>1,a[1],a[2],a[3],a[4],…a[m]为m个整数,若在这m个数中任取2个整数对m不同余,则这m个整数对m构成完全剩余系。
证明:构造m的完全剩余系(0,1,2,…m-1),所有的整数必然这些整数中的1个对模m同余。取r[1]=0,r[2]=1,r[3]=2,r[4]=3,…r=i-1,1<i<=m。令(1):a[1]≡r[1](mod m),a[2]≡r[2](mod m),a≡r(mod m)(顺序可以不同),因为只有在这种情况下才能保证集合{a1,a2,a3,a4,…am}中的任意2个数不同余,否则必然有2个数同余。由式(1)自然得到集合{a1,a2,a3,a4,…am}对m构成完全剩余系。
引理3.剩余系定理7
设m是一个整数,且m>1,b是一个整数且(m,b)=1。如果a1,a2,a3,a4,…am是模m的一个完全剩余系,则ba[1],ba[2],ba[3],ba[4],…ba[m]也构成模m的一个完全剩余系。
证明:若存在2个整数ba和ba[j]同余即ba≡ba[j](mod m),根据引理2则有a≡a[j](mod m)。根据完全剩余系的定义和引理4(完全剩余系中任意2个数之间不同余,易证明)可知这是不可能的,因此不存在2个整数ba和ba[j]同余。由引理5可知ba[1],ba[2],ba[3],ba[4],…ba[m]构成模m的一个完全剩余系。
引理4.同余定理6
如果a,b,c,d是四个整数,且a≡b(mod m),c≡d(mod m),则有ac≡bd(mod m)
证明:由题设得ac≡bc(mod m),bc≡bd(mod m),由模运算的传递性可得ac≡bd(mod m)
二、证明过程:
构造素数p的完全剩余系P={1,2,3,4…(p-1)},因为(a,p)=1,由引理3可得A={a,2a,3a,4a,…(p-1)a}也是p的一个完全剩余系。令W=1*2*3*4…*(p-1),显然W≡W(mod p)。令Y=a*2a*3a*4a*…(p-1)a,因为{a,2a,3a,4a,…(p-1)a}是p的完全剩余系,由引理2以及引理4可得a*2a*3a*…(p-1)a≡1*2*3*…(p-1)(mod p)即W*a^(p-1)≡W(modp)。易知(W,p)=1,由引理1可知a^(p-1)≡1(modp)
[编辑本段]费马小定理在数论中的地位
费马小定理是数论四大定理(威尔逊定理,欧拉定理(数论中的欧拉定理,即欧拉函数),中国剩余定理和费马小定理)之一,在初等数论中有着非常广泛和重要的应用。实际上,它是欧拉定理的一个特殊情况(见于词条“欧拉函数”)。
[编辑本段]费马小定理的实际应用
如上所述,中国猜测只有一半是正确的,符合中国猜测但不是质数的数被称为“伪质数”。
对于中国猜测稍作改动,即得到判断一个数是否为质数的一个方法:
如果对于任意满足1 < b < p的b下式都成立:
b^(p-1)≡1(mod p)
则p必定是一个质数。
这个定理告诉我们,判定一个数是否为质数,没有必要测试所有的小于p的自然数,只要测试所有的小于p的质数就可以了。 事实上,测试小于p的平方根的所有质数就可以了。
这个算法的缺点是它非常慢,但是实现简单;很适合在计算机上面运行程序进行验算一个数是否是质数,不过这种方法并不是实际工程中采用的判定方法。

证明一、准备知识:
引理1.剩余系定理2
若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当ac≡bc(mod m)时,有a≡b(mod m)
证明:ac≡bc(mod m)可得ac–bc≡0(mod m)可得(a-b)c≡0(mod m)因为(m,c)=1即m,c互质,c可以约去,a–b≡0(mod m)可得a≡b(mod m)
引理2.剩余系定理5
若m为整数且m>1,a[1],a[2],a[3],a[4],…a[m]为m个整数,若在这m个数中任取2个整数对m不同余,则这m个整数对m构成完全剩余系。
证明:构造m的完全剩余系(0,1,2,…m-1),所有的整数必然这些整数中的1个对模m同余。取r[1]=0,r[2]=1,r[3]=2,r[4]=3,…r=i-1,1<i<=m。令(1):a[1]≡r[1](mod m),a[2]≡r[2](mod m),a≡r(mod m)(顺序可以不同),因为只有在这种情况下才能保证集合{a1,a2,a3,a4,…am}中的任意2个数不同余,否则必然有2个数同余。由式(1)自然得到集合{a1,a2,a3,a4,…am}对m构成完全剩余系。
引理3.剩余系定理7
设m是一个整数,且m>1,b是一个整数且(m,b)=1。如果a1,a2,a3,a4,…am是模m的一个完全剩余系,则ba[1],ba[2],ba[3],ba[4],…ba[m]也构成模m的一个完全剩余系。
证明:若存在2个整数ba和ba[j]同余即ba≡ba[j](mod m),根据引理2则有a≡a[j](mod m)。根据完全剩余系的定义和引理4(完全剩余系中任意2个数之间不同余,易证明)可知这是不可能的,因此不存在2个整数ba和ba[j]同余。由引理5可知ba[1],ba[2],ba[3],ba[4],…ba[m]构成模m的一个完全剩余系。
引理4.同余定理6
如果a,b,c,d是四个整数,且a≡b(mod m),c≡d(mod m),则有ac≡bd(mod m)
证明:由题设得ac≡bc(mod m),bc≡bd(mod m),由模运算的传递性可得ac≡bd(mod m)
二、证明过程:
构造素数p的完全剩余系P={1,2,3,4…(p-1)},因为(a,p)=1,由引理3可得A={a,2a,3a,4a,…(p-1)a}也是p的一个完全剩余系。令W=1*2*3*4…*(p-1),显然W≡W(mod p)。令Y=a*2a*3a*4a*…(p-1)a,因为{a,2a,3a,4a,…(p-1)a}是p的完全剩余系,由引理2以及引理4可得a*2a*3a*…(p-1)a≡1*2*3*…(p-1)(mod p)即W*a^(p-1)≡W(modp)。易知(W,p)=1,由引理1可知a^(p-1)≡1(modp)
[编辑本段]费马小定理在数论中的地位
费马小定理是数论四大定理(威尔逊定理,欧拉定理(数论中的欧拉定理,即欧拉函数),中国剩余定理和费马小定理)之一,在初等数论中有着非常广泛和重要的应用。实际上,它是欧拉定理的一个特殊情况(见于词条“欧拉函数”)。


安化县13414206855: 如何证明费马小定理 -
豆卢怪脑立:[答案] 一、准备知识:引理1.剩余系定理2若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当ac≡bc(mod m)时,有a≡b(mod m)证明:ac≡bc(mod m)可得ac–bc≡0(mod m)可得(a-b)c≡0(mod m)因为(m,c)=1即m,c互质,c可以约去,a–b...

安化县13414206855: 怎么证明费马小定理? -
豆卢怪脑立:[答案] 费马小定理是数论中的一个重要定理,其内容为:假如p是质数,且(a,p)=1,那么 a^(p-1) ≡1(mod p) 假如p是质数,且a,p互质,那么 a的(p-1)次方除以p的余数恒等于1一、准备知识:引理1.剩余系定理2 若a,b,c为任意3个整...

安化县13414206855: 求费尔玛小定理证明过程 -
豆卢怪脑立:[答案] 费马小定理,若p是素数且a是整数则a^p≡a(mod p),特别的若a不能被p整除,则a^(p-1)≡1(mod p). 这可以用数学归纳法证明. a=1显然成立. 假设对a成立,就是a^p≡a(mod p),则对a+1,(a+1)^p,由二项式定理,除了第一项a^p和1以外,其他各项系数...

安化县13414206855: 求证费马小定理啊 -
豆卢怪脑立:[答案] 引理1.剩余系定理2若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当ac≡bc(mod m)时,有a≡b(mod m)证明:ac≡bc(mod m)可得ac–bc≡0(mod m)可得(a-b)c≡0(mod m)因为(m,c)=1即m,c互质,c可以约去,a–b≡0(mod...

安化县13414206855: 怎么证明费马小定理?证明:假如p是质数,且(a,p)=1,那么 a^(p - 1) ≡1(mod p) -
豆卢怪脑立:[答案] 一、准备知识: 引理1.剩余系定理2 若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当ac≡bc(modm)时,有a≡b(modm) 证明:ac≡bc(mod m)可得ac–bc≡0(mod m)可得(a-b)c≡0(mod m)因为(m,c)=1即m,c互质,c可以约去,a–b≡0(mod m)...

安化县13414206855: 初等数论中的同余,欧拉定理与费马小定理证明:对于任意整数a,(a,561)=1,都有a560≡1(mod561),但561是合数. -
豆卢怪脑立:[答案] 561=3*11*17 3,11,17都是质数 且,因为 (a,561)=1,所以 (a,3)=1,(a,11)=1,(a,17)=1 根据费马小定理有: a^2≡1 这样 (a^2)^280≡1,即 a^560≡1 (mod 3) a^10≡1 这样 (a^2)^56≡1,即 a^560≡1 (mod 11) a^16≡1 这样 (a^2)^35≡1,即...

安化县13414206855: 请给出费尔马小定理的证明
豆卢怪脑立: 费马小定理是数论中的一个定理.其内容为假如a是一个整数,p是一个质数的话,且a、p互素,则 a^(p-1)≡1(mod p) (就是说,a的(p-1)次幂减1后是p的倍数.)证明:(1)p=2时,若整数a与p=2互素,则a是奇数不妨设为2b+1,则a^(p-1)≡2b+1≡...

安化县13414206855: 费马小定理的证明 -
豆卢怪脑立: 马猜想〔Fermat's conjecture〕又称费马大定理或费马问题,是数论中最著名的世界难题之一.1637年,法国数学家费马在巴歇校订的希腊数学家丢番图的《算术》第II卷第8命题旁边写道:「将一个立方数分为两个立方数,一个四次幂分为两个...

安化县13414206855: 费马小定理 证明 -
豆卢怪脑立: 费马小定理的证明 一、准备知识: 引理1.剩余系定理2 若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当ac≡bc(mod m)时,有a≡b(mod m) 证明:ac≡bc(mod m)可得ac–bc≡0(mod m)可得(a-b)c≡0(mod m)因为(m,c)=1即m,c互质,...

安化县13414206855: 求费马小定理的证明 -
豆卢怪脑立: 一、准备知识: 引理1.剩余系定理2 若a,b,c为任意3个整数,m为正整数,且(m,c)=1,则当ac≡bc(modm)时,有a≡b(modm) 证明:ac≡bc(mod m)可得ac–bc≡0(mod m)可得(a-b)c≡0(mod m)因为(m,c)=1即m,c互质,c可以约去,a–b≡0(...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网