青藏高原北缘及其邻区中新世构造变形及其成矿作用

作者&投稿:汗琬 (若有异议请与网页底部的电邮联系)
5300年前干尸,在青藏高原发现。~

  青藏高原(Qinghai-Tibet Plateau,或Tibetan Plateau),中国最大、世界海拔最高的高原。大部在中国西南部,包括西藏自治区和青海省[1]的全部、四川省西部、新疆维吾尔自治区南部,以及甘肃、云南的一部分。整个青藏高原还包括不丹、尼泊尔、印度、巴基斯坦、阿富汗、塔吉克斯坦、吉尔吉斯斯坦的部分,总面积250万平方公里。境内面积240万平方公里,平均海拔4000~5000米,有“世界屋脊”和“第三极”之称。是亚洲许多大河的发源地。
  折叠编辑本段地理位置
  折叠经纬度
  74°E ~104 °E,25°N~40 °N。
  位于昆仑山、祁连山、横断山脉和喜马拉雅山之间。
  折叠地质结构

  青藏高原位于我国第一级阶梯,高原面平均海拔4000~5000 m。从高原往北和往东地势急剧下降,往北到国境,往东到大兴安岭、太行山、伏牛山、武当山、武陵山一线等广大地区,除少数山地外,地势降到3000 m以下,一些盆地高度只有1000 m左右,为第二级阶梯。再往东地势更低,形成一些低山丘陵,除沿海山地与台湾山地一些高峰外,海拔多在1500 m以下,东部的大平原高度不到200 m,向海延伸到浅海大陆架,为第三级阶梯。这种地貌分布特征青藏高原在新生代强烈隆升有关,且每个地貌台阶的边坡常是一些新构造断裂分布位置,许多延绵千里的高大山脉的走向受断裂构造线的控制。
  青藏高原外围经常发生严重地震。这个高原在印度于五千万年前开始推挤欧亚大陆时隆起,喜马拉雅山脉就是在这个强大的推力之下形成。这座山脉在不稳定的结构地形推挤下,到现在仍在往上升。每年大约上升一厘米左右。
  折叠地质特点
  青藏高原是地球上海拔最高、面积最大、年代最新、并仍在隆升的一个高原。它夹持于塔里木地台、中朝地台、扬子地台和印度地台之间,呈纺锤状。内部有一系列不同演化历史和不同源地的陆块、褶皱带相间排列,反映了特提斯(见特提斯地质)的复杂演化历史。统一高原的出现是新生代以来印度板块与欧亚大陆碰撞(见大陆碰撞)的结果。
  基本构造格架和演化
  青藏高原由北向南包括祁连-柴达木、昆仑、巴颜喀拉、羌塘-昌都、冈底斯和喜马拉雅等6个构造带,各构造带之间为蛇绿混杂岩所代表的缝合带隔开。大致以龙木错-金沙江缝合带为界,北面的祁连-柴达木,昆仑、巴颜喀拉构造带等,属于欧亚古陆南缘的构造带,在早中元古代结晶基底上,发育了早古生代优地槽,加里东运动使地槽回返,形成褶皱基底,晚古生代转化为稳定的盖层。其中石炭-二叠纪出现含煤建造,暖水动物群和华夏植物群繁盛。南面的冈底斯、喜马拉雅构造带,在中晚元古代结晶基底上整合递变,从早古生代开始发育了地台盖层,海相沉积一直延续到始新世,其中晚石炭世-早二叠世广泛发育了冈瓦纳相冰海杂砾岩和冷水型生物群,是冈瓦纳古陆北缘的微陆块。
  由于这 6个构造带最新海相地层层位和作为各构造带分界的缝合带,明显地从北向南依次变新,表明青藏高原是由欧亚大陆不断向南增生,冈瓦纳古陆北缘微陆块不断解体、北移、拼贴到欧亚大陆南缘而产生的。始新世青藏高原结束了洋壳演化和洋壳向欧亚大陆俯冲(见俯冲作用)的历史。由于印度洋不断扩张,已拼合的印度板块与欧亚大陆之间发生大陆岩石圈俯冲。在俯冲带地壳缩短,分层变形、分层加厚。经历了构造抬升和均衡隆升的阶段,在晚新生代青藏高原出现。青藏高原的形成主要是中更新世以来近200万年地壳隆升的结果,并且这一隆升过程至今尚未结束。青藏高原中若干条反映不同时期洋壳的蛇绿岩带,揭示了冈瓦纳古陆不断解体,向北漂移,与欧亚古陆碰撞、拼合,欧亚古陆不断增生的历史。主要蛇绿岩带和混杂堆积带如下:
  北祁连蛇绿岩带位于祁连中央隆起带北侧,沿玉门、肃南、祁连、门源一带出露了一套蛇绿岩,包括蛇纹石化橄榄岩、辉橄岩和纯橄岩;辉长岩、辉长辉绿岩;中基性海底喷发岩,主要为细碧岩、角斑岩,具枕状构造;放射虫硅质岩夹复理石砂板岩。呈北西-北西西向延伸600~700公里。带内发育有蓝闪石片岩,常出现在超镁铁岩上下盘,主要有绿帘石蓝闪片岩、石榴石蓝闪片岩和石英白云母蓝闪片岩3种组合类型,蓝闪石结晶粗大。大量生物化石证明,本带包括震旦纪晚期、寒武纪和奥陶纪早期 3期古蛇绿岩,它们的岩石组合大体相似。蛇绿岩的地球化学特征和放射虫硅质岩的存在,说明古北祁连洋盆处于洋中脊环境。
  昆仑蛇绿岩带 沿西大滩-修沟-玛沁断裂带残留了华力西末期的洋壳残体。蛇绿岩已失序,西段未见重要露头,东段花石峡、玛沁、玛曲一带,发现了百余个超镁铁岩体,属蛇绿岩套。与蛇绿岩伴生的构造混杂岩和泥砾混杂岩的基质是早三叠世复理石,夹有大量二叠纪石灰岩和含煤碎屑岩等外来块体。
  龙木错-金沙江缝合带 总体呈北西西向展布,东段向南偏转,近期主要表现为右行走滑断裂,有地震活动。在其西段锡金乌兰湖、大鹏湖、玛尔盖茶卡一带,发现了一套混杂堆积,在三叠纪砂板岩中,夹有大量二叠纪灰岩岩块和镁铁、超镁铁岩块;在中段胜利湖、若拉岗、狮头山一带,构造混杂堆积和蛇绿混杂堆积十分发育;东段金沙江混杂堆积带宽40公里,南北向展布,分东西两个带。西带为蛇绿混杂岩,在蛇纹岩基质中包卷了大量二叠纪放射虫硅质岩、石灰岩、细碧角斑岩岩块。东带为野复理石,中三叠统砂板岩中含有大量泥盆纪、石炭纪和二叠纪灰岩岩块。金沙江缝合带闭合于印支运动。
  班公错-怒江蛇绿岩带 曾为古特提斯南域的一个深海盆,保存了一套完整的洋岛环境的蛇绿岩组合,许多地方可以看到完整的洋壳序列。包括超镁铁岩、堆晶辉长岩、粒玄岩岩墙、枕状玄武岩、球颗玄武岩和放射虫硅质岩。放射虫为三叠纪-侏罗纪生物组合。上侏罗统-下白垩统浅海相碎屑岩不整合覆盖其上,其间往往发育有超镁铁岩古风化壳。
  雅鲁藏布江蛇绿岩带 沿印度河-雅鲁藏布江蛇绿岩断续出露,长达1700公里,南北宽10~50公里。多处可以看到完整的洋壳序列。包括地幔超镁铁岩、堆晶辉长岩、辉长岩、枕状拉斑玄武岩、辉绿岩席状岩墙(床)群,上覆灰绿色、紫红色放射虫硅质岩。由于板块俯冲,与蛇绿岩相伴,发育了泥砾混杂岩和蛇绿混杂岩。泥砾混杂岩常在蛇绿岩南侧,从三叠纪末到白垩纪,形成许多构造混杂岩块。晚白垩世泥砾混杂岩,其基质为杂色硅泥质类复理石,含二叠纪石灰岩、玄武岩,三叠纪砂板岩、侏罗纪砂岩、灰岩和早白垩世硅质岩岩块。蛇绿混杂岩往往在蛇绿岩带北侧,在蛇纹岩基质中混入了三叠纪砂岩、白垩纪放射虫硅质岩、辉长岩、火山岩岩块。日喀则蛇绿岩底盘发育了动力变质的角闪石石榴石片岩,其同位素年龄为0.81亿年,是蛇绿岩仰冲侵位形成的。

中国地质构造的基本格局
关于中国地质构造的基本格局,李四光(1939、1973)、黄汲清等(1977)、任纪舜(1990、1997)、程裕淇等(1994),分别从构造体系和构造域两个方面进行过概括和客观描述。借鉴前人成果,结合此次编图所取得的资料,认为中国的地质构造格局主要是板块间相互作用与陆内构造活动的综合反映,而板块活动与陆内块体再活动总是有一定的方向、方式和涉及一定地域,从而形成一定的构造体系域。这与构造体系和构造域的原义和范畴已不尽相同。强调板块相互作用与板内构造活动都具有重要意义。现从构造形变的综合形态、主体构造带展向、复合关系及其动力体系角度,将全国划分为古亚洲、特提斯、华夏—滨西太平洋、贺兰—康滇等4个主要的构造体系域,它们东西横亘、南北纵贯,东西约略对称,并以上扬子地块为中心构造结,构成了一幅大中华构造格架。
我国地质构造的一个显著特点是断裂构造十分发育,所编1:250万地质图上最主要的区域断裂(表5-1)计89条(图5-2),有45条属发生过6级以上地震的活动性断裂,他们分属于不同的构造体系域,其中包括6条板块结合带和6条重要的微板块结合带和10条地壳拼接带,多数有蛇绿岩带、构造混杂岩带发育。不少伴有规模较大的韧性剪切带,其中有16条已发现有蓝片岩带。而含柯石英榴辉岩的超高压变质带主要在中央造山系发现。由于绝大部分具有较长的发育历史和复杂的力学转变过程,地质图未能区分其属性。
古亚洲构造体系域
该域包括任纪舜(1997)所划分的古亚洲构造域,但范围、时限更为广泛,主要是还考虑了板块拼合后的陆内造山作用。以李四光(1973)所划分的3条巨型纬向带为主体,还包括其间所镶嵌的东西向排列的陆块或地块。这些构造形体总体循近东西向展布,中部约略向南弯曲或形成规模不等向南凸出的弧形弯滑构造,如淮阳弧、广西弧等,并相伴有NEE、NWW向一对X型剪切构造。
该体系域主要发育于我国中北部,包括发育于晚元古代以来,定型于华力西期的天山—兴蒙造山系和定型于印支期的中央造山带以及其间的塔里木、华北陆块。形成于燕山期发育于特提斯与华夏构造域之上的南岭构造带也是该域的新成员,以隆起—花岗岩带为特征,是陆内造山的产物。除此尚有一些规模较小的构造带。
特提斯构造体系域
特提斯构造体系域为华力西、印支、燕山、喜马拉雅期,特提斯洋迭次关闭,冈底斯—印度板块多次相对向N或NNE方向聚合、碰撞造山形成的一个主体为NW向、中段为近EW向、东南段约略向南东撒开的反S状弧形挤压地带,是总体为EW向的特提斯造山系在特定边界条件下发生的构造畸变。其地域主要在中央造山带之南,扬子陆块以西的青藏高原地区,NW向的右江造山带也属该域组成部分。主体由一系列造山带间夹羌北—昌都、羌南、冈底斯等长条状弧形微陆块组成,其中有一系列巨大的断裂带,亦呈反S状,长达1 000~3 000 km余,多数伴有蛇绿岩带、外来混杂岩块或蓝片岩带,他们一般具有拉张、逆冲挤压等复性特征。东段兼有左行走滑和旋转,南段显示右行,其间的块体有向SE挤出的趋势。多数断裂活动性较大,为地震多发带。
金沙江-红河断裂带全长3 000 km以上,北西段呈NWW向分为两支:一支为羊湖—金沙江断裂,发育西金乌金蛇绿岩带,并有榴辉岩分布,在蛇形沟新发现有早二叠世深海放射虫硅质岩;另一支为郭扎错—若拉岗日断裂,在藏北青南沿带发育二叠—三叠系复理石、硅质岩、基性火山岩及二叠系灰岩外来岩块,且有蛇绿岩残块及蓝片岩。中段折向NNW至SN向,由金沙江蛇绿岩及含志留系—二叠系灰岩外来岩块的泥砾混杂岩组成宽达30~40 km的强变形带,以逆冲兼有右行剪切为特征。南段经哀劳山延出国境,与越南黑水河消减带相连,以逆冲兼有左行剪切为主,是一条对接于印支期的微板块结合带。甘孜-理塘断裂带为金沙江-红河断裂带的NNW向分支,北段为逆冲左行剪切,南段以右行剪切为主,带内有理塘蛇绿混杂岩和蓝片岩、志留系二叠系灰岩的外来岩块。
龙木错—澜沧江断裂带:西起龙木错,过青海后转沿澜沧江南下,出境后与泰国清莱—马来西亚结合带连接。境内长2 800 km。西段于藏北加错见蛇绿岩;双湖地区也有蓝片岩带发育,南段有昌宁—孟连二叠纪蛇绿岩带。可能是一条二叠纪晚世微板块结合带。
班公错—怒江断裂带:前已述及,该断裂带西起班公错,经改则、丁青转怒江南下出境,中国境内长2 500 km。北西段分布有班公错、改则、丁青、碧土、滇西三台山等三叠纪—白垩纪蛇绿岩带和改则蓝片岩带;南段与澜沧江之间的昌宁—孟连二叠纪蛇绿混杂岩带,现归于澜沧江带,但与怒江带有何联系,还值得研究。除此,伴有木嘎岗日群(J)含放射虫硅质岩—复理石,显示洋壳自北而南俯冲,冈底斯向北仰冲。结合带最终对接于侏罗纪至早白垩世初。该断裂带南侧此次新厘定的噶尔—纳木错断裂带,沿带有6处蛇绿混杂岩和放射虫硅质岩—复理石分布(K1),还可能与波密地区迫龙藏布蛇绿岩带相连。小洋盆闭合于早白垩世末,断裂带显示自南向北俯冲。
雅鲁藏布江断裂带:沿印度河—雅鲁藏布江河谷展布。自萨嘎以西分为南北两支。东端在墨脱形成大拐弯出境,中国境内长1 700 km,宽几至几十千米。其北为冈底斯白垩纪—始新世火山弧,以南发育弧前盆地复理石楔。有雅鲁藏布江蛇绿岩带、放射虫硅质岩、泥砾混杂岩和蓝片岩分布。最近在林芝玉门有三叠纪蛇绿岩带发现,说明洋盆在三叠纪已经出现,对接于白垩纪未。断裂带为自南向北俯冲。
道孚—康定、紫云—南丹、右江等NW向断裂以挤压兼有左行走滑为特征。道孚-康定断裂带也称鲜水河断裂带,自二叠纪以来长期活动,中新世后左行走滑总距达80~100 km(许志琴,1997),南延有可能与小江断裂带相接,是一条地震活动频发带。
在喜马拉雅造山带有定日—洛扎断裂、喜马拉雅主中央断裂和主边界断裂,为一组向南凸出的逆冲推覆断裂系。喜马拉雅主中央断裂向北缓倾,倾角30°左右。主边界断裂带北侧的古老地层向南逆冲于山前的西瓦里克群(N+Q)之上,显然是印度陆块向北俯冲的产物,其形成时代为10 Ma~22 Ma(潘桂棠面告)。同时伴有强烈的伸展作用:高低喜马拉雅之间的藏南拆离带,大规模向NE滑脱,向东至墨脱与雅鲁藏布江断裂带叠接,形成时代为12 Ma~21 Ma(潘桂棠面告)。沿北喜马拉雅构造带由拉轨岗日群组成一条穹隆群,最近区调证实是伸展环境下发展起来的一串变质核杂岩构造。在冈底斯地区垂直造山带有多条近于等距的SN向地堑或张裂带,最近区调发现,其中当穷错—许如错地堑有中新碱性世火山岩、侵入岩(26.1 Ma),申扎打个隆弄巴沟口SN向断裂,为一强地震活动带,它们也与印度陆块的嵌入、高原隆升背景下的陆内伸展有关。
华夏—滨西太平洋构造体系域
任纪舜等将中国东部划归由在太平洋—太平洋动力体系形成的环太平洋构造域。程裕淇等则分为由扬子、华夏两个古板块相互作用形成的古华夏构造域和燕山期以来由欧亚板块和太平洋板块相互作用形成的滨西太平洋构造域。根据1∶250万地质图编图资料,对古太平洋构造所知尚少,故在前人划分基础上称为华夏—滨西太平洋构造体系域。华夏构造域地域限于中国东南部地区,滨西太平洋构造域则扩及整个东亚地区。华夏古板块与扬子古板块的相互作用,主要由南向北和由东向西以及由南东向北西的挤压碰撞,自四堡运动至加里东运动完成拼合。印支、燕山运动时期两个古板块又发生强烈的陆内挤压嵌合作用。加里东造山运动时期华南造山带先自南向北不均一仰冲推覆,后自东向西仰冲拼贴,奠定了该区构造轮廓。形成了总体为NE向、中段为EW向的反S状的江南地块和反S状钦—杭结合带以及反S状罗霄—北武夷—会稽山加里东期前缘褶冲带,也可能是EW向构造带在特定条件下的一个变种。除此,还发育有稍晚的近南北向叠加褶皱和一些更晚的NE向的褶皱带、断裂带。该构造体系域的NE向反S构造带与特提斯构造域的NW向反S构造带在中国南部围绕四川盆地,约略呈犄角之势,只是前者规模略小,不完全对称。
燕山运动以来,由于陆内收缩和欧亚板块与古太平洋板块相互作用,形成了东亚滨西太平洋构造体系域,主要包括辽阔的中国东部陆缘活化带、完达山造山带和台湾造山带以及东南海域,在东部陆区叠加改造中国东部的华夏构造体系域与古亚洲构造体系域,形成了一系列NNE向的隆起—岩浆带和松辽、华北等大型盆地,其间发育一系列的NNE向巨大的断裂带,包括大兴安岭—太行山、嫩江—青龙河、济宁—团风、镇江—广州、丽水—海丰、长乐—南澳、台东纵谷、台湾中央山脉、台西山麓等断裂带,也卷入了狼山、弥勒—师宗、抚州—遂川等NE向断裂,重要的有30条,不少断裂的一些段落并不连续,呈左行侧列排列,其性质以逆冲兼有左行走滑为主,且以自SE向NW仰冲居多。他们在晚白垩世时大部分转化为正断层,局部发生位移不大的右行走滑,其中以汾渭断裂带控制的“之”字状地堑系最为特征。台湾的一束NNE向断裂在新近纪以来作叠瓦式向西逆冲,至今仍有活动。
该域著名的郯庐断裂系纵贯中国东部,它是中生代以来在一些古断裂的基础上发展起来的,以郯庐断裂带为主干,南北均有一些分支,形成一个具有成生联系的断裂系统。居于中段的郯庐断裂带由一束平直的走滑断裂组成,断面向E陡倾,在其两侧变形特点有明显不同。东盘以长距离牵引拖曳为主,断续出露的青白口纪张八岭群、南华—震旦系及古生代地层,在庐江、张八岭一带呈NNE走向,向北逐渐向东偏转,至苏北宿迁—泗洪、响水—淮阴一带转为NE、NNE向。总体呈NE—NNE向大型弧形构造,其间可能有一些规模较小的拉断现象,显然具牵引弧特点。至于肥东地区出露于郯庐带中的阚集岩群、肥东岩群等中深变质构造岩片,这些古老硬脆的块体,很可能是走滑错断的碎片。还需要说明的是在郯庐断裂带的南部广济、宿松等地断裂两侧的震旦纪及早古生代地层大致呈由NWW向转为NE向的弧形,平移错动不显著,说明郯庐断裂带南部是在一个向南凸出的弧形构造基础上发展起来的,最大走滑拖曳部位在郯城、庐江一带,向南逐渐减弱消失。郯庐断裂带的西盘构造带与构造线主要为NWW至EW向,与走滑断裂带直交,不具拖曳特点,出现巨大断距。郯庐断裂带南端达长江北岸,与扬子陆块北缘逆冲断裂带以及大别推覆体前缘断裂带同时终止广济附近,即他们具有共同终点。由此不难设想郯庐断裂带西侧的深层俯冲和大推覆与郯庐断裂带的大平移有密切的成生联系。平移作用导致和加强了西侧华北陆块的深层俯冲和大别块体向南挤出与推覆效应。而推覆与俯冲是以郯庐断裂带为边界条件,并使走滑断裂带随推覆同步发展延伸。这种走滑与推覆的联动现象在中国东南部已有多处见到。郯庐断裂系南延部分的庐江—怀宁断裂,平移距离很小,该断裂在湖口与赣江断裂带相接后,因九岭叠瓦式逆冲推覆带沿其西侧向SSW方向推移,使其平移特征得到显著加强,以后形迹断续零星,至粤西地区主要是迁就利用了较古老的四会—吴川断裂带,又有所加强。郯庐断裂系北段为舒兰—依兰断裂带和敦化—密山断裂带,断裂走向也向NE偏转,左行走滑作用明显减弱,敦化-密山断裂后期右行走滑则比较明显。根据地质依据和大量定年数据,郯庐断裂带启动于三叠纪末(2088Ma~245 Ma)(王小风等,2000),强烈走滑于侏罗纪—早白垩世(100 Ma~208 Ma),晚白垩世至古近世为伸展期,新近纪又有一些挤压或右行走滑。断裂带西侧大约也在印支期发生了华北陆块向南俯冲,处于中下地壳的大别山“山根”受到挤压深层发生超高压变质,开始挤出,在中部层次形成低温高压蓝片岩带。于侏罗纪时岩块大规模向南逆冲推覆,在白垩纪时大别山体开始隆升,周边断陷。东南沿海的长乐—南澳断裂带走滑剪切的时限集中于100 Ma~120 Ma(舒良树,2000)。所以中国大陆东部的NNE向走滑作用启动时间有所不同,但均结束于100 Ma前后。
除此,在东南陆缘还发育一组NW向张裂带,断裂形迹断断续续,向陆内逐渐闭合,沿带发育中新生代火山、断陷盆地和成串的火山机构及小型侵入体,沿九江-宁德、会昌-云霄断裂带有中酸性同熔型斑岩、次火山岩或晶洞花岗岩分布,具深张断裂特点。沿海的晶洞花岗岩沿九江-宁德断裂带达赣东北的灵山。
贺兰—康滇构造体系域
该域主体纵贯我国中部,包括贺兰山、康滇、黔中一带的褶皱带和断裂带,以及近SN向的鄂尔多斯盆地,松潘—甘孜造山带东部以及四川盆地。该体系域居我国地质构造的中轴,而上扬子古陆块(现四川盆地),则是多体系聚合施压的稳定核心,构成中国的中心构造结。其西面是“北、西双向”挤压而成倒三角形的松潘—甘孜褶皱区(许志琴,1997),北、东、南三面为大巴山、江南、川南等弧形褶皱带所围绕。从深部构造看我国地壳西厚东薄,西南特厚、东南特薄,而该域地壳厚度为38~45 km,大致代表我国地壳的平均厚度,恰为“中性”的过渡带(程裕淇,1994)。
该域有7条重要的断裂带,均为地震活动的敏感地带。北端的鄂尔多斯断裂带,走向SN,向西陡倾,晚侏罗世—早白垩世时向E逆冲,东部相对下降,最大降幅可达800 m。中南段有著名的龙门山、箐河和小金河逆冲推覆断裂带,属松潘—甘孜造山带的前陆逆冲推覆系统。南段于康滇地块发育3条近SN向断裂带,长度均为500~600 km。自西向东依次为绿汁江、安宁河以及小江断裂带,同为左行逆冲推覆断裂带,都是二叠纪玄武岩的喷溢通道,地震活动由西而东依次减弱。
上述格局说明该构造体系域主要是陆内近东西向挤压和特提斯构造动力体系与华夏—滨西太平洋构造动力体系复合联合作用的结果,同时还受到了古亚洲构造动力体系的复合影响。
以上四大构造体系域各具特点,同时又互相迁就、互相改造、互相干涉、互相叠加,形成我国复杂而有规律的构造面貌。
除此,近期限的一些调查资料表明千山带内部先后的褶皱变形可以平行造山带发生叠加,但也可以近乎直交。如江南地区四堡期限第1期褶皱带为近SN向,第2期即主体褶皱为近EW向;赣中武功山区加里东期第1期褶皱带为近EW向,第2期即主体褶皱为近SN向;汤家富也报导了(2003)安徽滁州、和县、巢湖一带印支期限早期褶皱为NWW向,后期为NE向,均近直交。这也可从板内构造活动和板块碰撞两种作用得到期解释,是否如此,值得进一步研究。



漂移的大陆(2)(图)






扩张的海底和活跃的板块
30年后,随着人类认识大陆向大洋挺进,地质学在洋底资料方面获得了前所未有的巨大进展。大陆漂移学说也从中获得了强大的生命力,以新的姿态焕发青春,终于战胜了固定论,成为现代地质学的理论支柱。
50年代以来,科学家采用先进的科学技术对海底地貌进行了广泛而精确的测量,发现大洋底并不像以前所想象的是平坦的,而是在存在着贯穿洋底的巨大海底山脉即洋中脊,它绵延各大洋达几万公里。在洋中脊的顶部为一连续的破裂带。此外还发现了深海沟、断措带、海底平顶山及其分布特征:深海沟与洋中脊大致平行,断措带垂直切割洋中脊,海底平顶山则按年代在垂直洋中脊的方向上排列成行。
面对这些新发现的科学事实,美国地质学家赫斯和迪茨分别于1961年和1962年借用地幔对流理论提出了海底扩张学说,认为地幔物质从洋中脊的破裂带上涌冷却形成了洋中脊。由于地幔对流,牵引着大洋地壳从破裂带两侧向相反的方向运动、扩张,当遇到大陆地壳时就插入大陆地壳底下重又形成地幔物质,参加下一个循环的运动。当大洋地壳与大陆地壳碰撞下插时,使大洋地壳消减而形成深海沟,使大陆前缘受挤压抬升而形成山脉或岛屿。据推测,大洋地壳全部更新一次约需1.5亿年时间。所以海洋不是永存的,大陆也并非固定不动。比如,大西洋就是形成于联合古陆内部的新生大洋,扩张着的洋底推动邻接大陆向两侧漂移,大西洋便不断展宽。而太平洋原来是联合古陆以外的古老大洋,岩石圈一边在脊顶生长,一边在海沟俯冲潜没,不断的更新。古老的太平洋具有年青的洋底。联合古陆的的分裂与大陆四散漂移,实际上是大西洋、印度洋新生和扩张的结果。大陆不是独立地沿着洋底漂移,洋底与大陆一样也在移动。海底扩张是大陆漂移的新形式。
对于这种学说,洋底广泛发育的条带状磁异常现象提供了重要的证据。对古地磁的研究,是五十年代后期兴起的一门新学科。它是从在亿万年前形成的岩石中保存下来的剩余磁性,分析出大量有价值的地球运动资料。因为磁性有稳定的方向性和强度,对它的研究可以推断出远古时地块的位置。1963年,科学家瓦因和马修斯在海底扩张说的基础上提出解释海底条带状磁异常的新模式。他们认为在地幔物质沿着脊轴上涌,冷凝成新洋底的过程中,新生岩石圈会沿当时地球磁场的方向被磁化。大量调查表明,洋底正、负磁异常条带的宽度与地磁场转向年表中正极向、反极向期的时间间隔成正比关系,从而证实了海底扩张学说与他们自身提出的模式的正确性。
海底扩张说的提出,不仅使大陆漂移学说以新的形式重新活跃起来,而且引起了科学界的广泛兴趣。它为大陆漂移提供了动力的解释。海底扩张说的提出以及深海沟的事实向人们提示,地球表面的岩石圈即地壳并不是完整的连续体,而被分隔成若干块体。1965年,加拿大科学家威尔逊建立了“转换断层”概念,并首先指出,连绵不绝的活动带网络将地球表层划分为若干块刚性的板块。1967年到1968年期间,法国地质学家勒皮维和美国的摩根、麦肯齐及帕克将转换断层概念外延到球面上,定量的论述了板块运动,确立了板块构造说的基本原理。1968年,美国的艾萨克斯、奥利弗和塞克斯进一步阐述了地震与板块活动之间的联系,并将这一新兴理论称作“新全球构造”。按照这种学说具体说来,板块是指由地震带所分割的内部地震活动较弱的岩石圈单元。由于板块的横向尺度比厚度大的多,因此而得名。狭长而连续的地震带勾划了板块的轮廓,它是划分板块的首要标志。全球地壳共分为六大板块:欧亚板块、美洲板块(有人将它进一步划分为北美板块和南美板块)、非洲板块、印度板块(或称为印度洋板块、澳大利亚板块)、太平洋板块和南极洲板块。同时,根据地震带的分布及其它标志,人们还继续划分了纳斯卡板块、科科斯板块、加勒比板块和菲律宾海板块等次一级板块。板块的划分并不遵循海陆界线,也不一定与大陆地壳、大洋地壳之间的分界有关。大多数板块都包括大陆和洋底两部分。太平洋板块是唯一基本上由洋底岩石圈构成的大板块。
板块学说较为成熟的解释了一些原先大陆漂移学说面临的难题。板块底下是处于半熔融状态的上地幔物质,称为“软流层”,“软流层”的对流为板块运动提供了动力。当两个板块相遇碰撞时就挤压隆起形成山脉,如喜马拉雅山就是古印度洋板块与欧亚板块碰撞隆起而形成的。板块之间的相互作用就是全球地壳构造运动的基本原因。板块构造理论认为,不同的板块可以结合为一体,同一板块也可以分裂向不同方向移动,中间形成新的大洋,例如大西洋就是这样形成的,而且人们预测,红海、东非裂谷和加利福尼亚湾都在不断分裂,正孕育着新的大洋,而太平洋则正在缩小。
实质上,板块构造理论就是大陆漂移理论在新的历史条件下的新的表现形式,它为经典大陆漂移学说提供了新的理论根据。它从大陆和大洋的全球规模来研究地球历史,将人们传统上加以割裂的大陆和海洋研究统一起来,不再是单一的以大陆的研究来推测海洋的发展,克服了经典理论的局限性。板块构造理论能够很好的解释一些地质现象,不仅在说明地球基本面貌的形成和发展中取得了极大的成功,而且为人们建立新的地球史观开辟了广阔的前景,最终确定了人们地球史观的活动论,彻底摧跨了固定论的束缚,成为现代地质学和地球史观的理论基础。
有力的证据
大陆漂移学说、海洋扩张学说和板块学说事实上是辨证统一的学说。作为本世纪最重要的学说之一,它们从问世至今虽然在全球范围内得到肯定,但仍受到少数人的质疑。然而有许多的发现可以为它们提供强而有力的证据。
首先是这一学说较好的解释了地震的成因,即岩石圈板块之间的相互运动造成了地震。地震活动也似乎支持这种观点。科学家们认为,太平洋板块向周围大陆板块的俯冲,印度和阿拉伯板块与欧亚大陆板块的碰撞,形成了环太平洋地震带和喜玛拉雅——地中海地震带。事实上,全球发生的大地震百分之九十五以上都来自于这两大地震带。
其次,这一学说还可以用来解说其它地质现象。如本世纪日本和菲律宾的火山爆发,科学家们就说都是由地壳板块运动引起的。大洋板块同大陆板块在太平洋的边缘部分发生碰撞,大洋板块被推向地壳下面,而大洋板块里的固体物质被地幔里的高温熔化或煮沸而变轻,再被推向上面以灰尘、烟雾和熔岩喷发到大气里。还有,科学家们通过测定发现了一些数据。比如,科学家们发现,大陆板块每年都以一定的速度在移动着,并且这一速度可以达到每年20厘米;还有我国和日本应用发自宇宙的电波进行的联合研究揭示,日本茨城县鹿岛町与中国上海市的距离,由于地壳变动每年缩短2.9厘米;而科学家们发现欧亚大陆板块在与邻近板块互相碰撞、挤压作用下,每年平均上升约0·2——0·5厘米。据此可以推测,台湾海峡约在1.5万年后变为陆地,祖国的宝岛台湾将与祖国大陆在地理上合为一体!
世纪末的1999年,我国科学家在“世界屋脊”青藏高原上首次发现了一种环境敏感度极强的甲壳动物--新型介形虫活体。介形虫具有不迁移性,特定的介形虫只适合在特定的环境中生存。而这些被称为“马氏唐古拉介”的小虫被发现的位置,正好位于青藏高原的第二缝合带——班公错-怒江缝合带上,这条缝合带是大约在1亿多年前的大陆碰撞、小洋盆地消亡后形成的,横亘在西藏中部。因此,新型介形虫的发现,很可能是大陆碰撞的“活证据”。也就是说,1亿多年前,这些现存介形虫的“祖先”就随着印度板块从非洲大陆分离并来到这里“定居”。
如此种种,不胜枚举。
大陆漂移理论从其经典形式到海底扩张说,再发展成为板块构造理论,经过几代人不懈的努力,走过了大半个世纪,完成了它理论发展的三部曲,终于实现了地质学和地球史观的伟大变革。它在探讨山脉和海洋的成因、地震活动、矿带分布、古气候状况、生物演化等各个领域都发挥着巨大的指导作用。然而历史是不可逆转的,人类在其短暂的历史中无法亲历地球上动辄上亿年形成的地质现象。站在青藏高原这一世界屋脊上,我们感慨曾经波涛汹涌、一望无际的大海在地壳剧烈运动中一去不复返,只能通过一块块海洋生物化石,一群群断裂扭曲的山脉和一堆堆大大小小的鹅卵石,来领略昔日大海的风采。
面对沧海桑田的变迁,人类不能不为大自然的力量所折服。大自然用它的巨笔不停的在地球上作出了一幅幅令人叹为观止的画卷,无时不刻的改变着地球的容颜。谁能知道,明天的地球将会是怎样的呢?

新疆以“三山夹两盆”为典型的地貌构造格局(图2-6-1),阿尔泰、天山与青藏高原北缘的昆仑-阿尔金山组成了中国西部宏伟的山系,呈现明显的正地形;其间以准噶尔、塔里木两盆地为代表,呈明显下陷的负地貌。现有研究资料表明,这种地貌构造格局是新疆新生代构造运动的结果。

图2-6-1 中亚地区地貌及其主要断裂分布简图

①伊犁盆地;②费尔干纳盆地;③锡尔达林;④楚萨雷苏;⑤卡兹库姆

从总体上分析,新疆的三大山系,除山间的盆地外,新生代构造活动都很强烈,两大盆地,即塔里木盆地和准噶尔盆地新生代构造运动相对不强(图2-6-2),根据砂岩型铀矿成矿条件分析,塔里木盆地、准噶尔盆地属于砂岩型铀矿有利的成矿区域,天山的一些山间盆地,如伊犁盆地、吐哈盆地、库米什盆地等,由于新生代构造活动相对也比较弱,也是有利的成矿区域,并在这些盆地已经发现多处矿床或矿化点。

图2-6-2 新疆SN向地貌构造剖面图

本书主要是探讨分析新生代构造运动及其对砂岩型铀矿成矿的控制作用,强调了中新世期间发生于青藏高原北缘及其邻区的构造变形及其与砂岩型铀矿成矿的关系;着重叙述了伊犁盆地南部、准噶尔盆地北部顶山地区和塔里木盆地的新生代构造运动特征及其对砂岩型铀矿的控制作用。

开始于大约65Ma左右印度与亚洲大陆的碰撞及其随后的陆陆汇聚作用是新生代亚洲大陆最为重要的构造事件,控制了中国西部乃至亚洲大陆新生代的构造变形。Stock和Molnar等(1988)根据印度洋海底的磁异常条带,计算分析了印度大陆新生代不同时期的古纬度,推算了印度大陆向北运动的速度;根据古地磁测量结果,Chen等(1993)和肖序常等(2000)推算了拉萨地块、羌塘地块等古纬度的位置,进而估算了地壳的缩短量。其结果揭示出印度与亚洲大陆之间在新生代期间的汇聚速率的变化,指示了青藏高原的变形存在阶段性特征。

本书主要根据青藏高原北缘及其邻区的一些地质资料(图2-6-1),简单回顾了发生于中新世的构造变形事件,并初步探讨了该期构造事件对中国西部成矿作用的影响。

一、青藏高原南部及其北缘山脉

南中国海(莺歌海)、中国东海和孟加拉海湾冲积扇等海洋钻探结果显示,中新世早期新生代沉积速率突然加快,根据稳定同位素示踪结果,显示了青藏高原中南部在中新世早期(25~20Ma)出现了快速的隆升-剥露。磷灰石裂变径迹测年结果显示出青藏高原北缘的阿尔金山脉-昆仑山脉在渐新世开始抬升-剥露,中新世早期山脉隆升速率加快;柴达木盆地红三旱剖面磁性地层学研究结果,揭示在渐新世晚期-中新世早期(28~26Ma)期间,沉积速率加快,推测青藏高原北缘在中新世早期发生了一期次重要的构造事件;盆地沉积-构造变形分析,结合古构造地貌复原,揭示出阿尔金断裂带在渐新世晚期-中新世期间发生了断裂位置的迁移事件;根据沉积学野外实地测量以及室内统计分析,揭示了阿尔金山北西前江尕勒萨依盆地新生代沉积物质的粒度在中新世早期(25Ma)发生急剧变粗,地层中砾岩层比例明显增加,砂岩碎屑物质成分发生突变,沉积相、沉积环境发生突变,反映了源区地貌和构造性质的改变,指示了源区的快速隆升和剥露事件的发生;江尕勒萨依盆地内新生代沉积物质中碳酸盐胶结物的δ14C和δ18O值测试结果,推断高原北缘气候在中新世早期(25~23Ma)发生了变化,指示了高原经历了一期快速的隆升。

二、塔里木盆地

现今的塔里木盆地的地势为西高东低,然而岩相古地理复原分析表明(图2-6-3、图2-6-4),塔西南一带在渐新世期间仍然存在海相地层,而东部当时主要为陆相地层,显示出当时地势为东高西低(图2-6-3);随着印亚大陆的汇聚闭合,帕米尔构造结形成,海水自渐新世晚期开始往西退出盆地,盆地内部不再发育海相地层,在塔西南一带,出现山麓磨拉石沉积,在盆地的东部的满加尔凹陷、库车凹陷等地,中新世则为湖相地层(图2-6-4);上述分析表明,塔里木盆地地势从东高西低转变为西高东低,开始发生于中新世早期,可能直到在中新世末才完成。

图2-6-3 塔里木盆地渐新世古地理略图

(据新疆古地理图集修编)

1—半闭塞—闭塞台地相带;2—沿岸滩坝相带;3—潮坪-湖相带;4—山麓堆积相;5—河流相;6—咸湖相;7—河湖相;8—粗碎屑沉积;9—碎屑沉积;10—膏泥沉积;11—泥质沉积

三、天山山脉

Hendrix等(1994)的磷灰石裂变径迹测试结果揭示出天山山脉(中段)在中新世早期(25Ma)发生了快速的隆升剥露作用;西天山地区、博格达地区磷灰石的裂变径迹测试及其模拟分析,同样也揭示出西、东天山山脉在中新世早期(25~24Ma)经历了快速的剥露作用;伊犁盆地为发育于天山造山带内部的山间盆地。钻孔和野外实地踏勘证实,在伊犁盆地内部中-新生代地层间存在多个不整合面,代表了多期次构造变形事件的存在;其中最为重要的一期构造是发生在中新世早期的一期构造活动,在伊犁盆地的南部和北部都有发育,以达拉地剖面最为典型,表现为由侏罗系-白垩系组成达拉地向斜构造被上新统不整合覆盖;在伊犁盆地的东麻扎一带,中新统直接不整合覆盖在褶皱变形的二叠纪火山岩之上。

图2-6-4 塔里木盆地中新统沉积相图

(据新疆古地理图集修编)

Ⅰ—冲积扇相;Ⅱ1—辫状河亚相;Ⅱ2—河流冲积平原亚相;Ⅲ—间隙性湖泊相

四、准噶尔盆地

在准噶尔盆地北部顶山地区,始新世—渐新世乌伦古河组表现为一套半潮湿-半干旱气候条件下的河流-冲积扇沉积体系,而中新世索索泉组则为极端干旱、炎热条件下的内陆沼泽、湖泊条件下的沉积物质;我们利用岩层中钙结核的δ14C和δ18O值测试结果,估算C3-C4生态系统,发现该区在中新世早期C4植物类型突然增加,也反映出古气候、古环境的突变(图2-6-5);西准噶尔成吉思汗山脉、萨吾尔山和东准噶尔的克拉麦里山花岗岩的磷灰石裂变径迹测试结果,推测山脉的剥露发生于白垩纪-古近纪,但是磷灰石温度-时间反演模拟分析,揭示出山脉的中新世早期构造剥露事件的存在。

五、中新世火山活动

第四纪火山活动在青藏高原及其北缘十分发育,天山造山带内仅在西天山的托云盆地内受费尔干纳断裂带控制,发育有火山活动;在北疆其他地区,仅在阿尔泰青河乔夏哈拉有第四纪玄武岩喷发,Ar-Ar法测年结果为(17.59±0.05)Ma。稀土和微量元素测试分析结果,揭示了该玄武岩具有大陆溢流玄武岩的特点。该火山活动可能体现了青藏高原北缘、塔里木盆地及天山等地中新世早期构造变形事件的远程效应。

图2-6-5 准噶尔盆地北部新生代地层中C4植物类型比例图

六、中新世成矿作用

在青藏高原南部、东南部第四纪成矿作用十分重要,已经发现了多条重要的成矿带,如三江成矿带、雅鲁藏布江成矿带;在高原北缘,由于自然条件所限,第四纪成矿作用研究程度严重不足。

在中亚地区,砂岩型铀矿的大规模成矿作用主要发生在新生代。在哈萨克斯坦的楚萨雷苏、锡尔达林和乌兹别克斯坦的中央卡兹库姆等地区,都发育有新生代期间形成的巨型铀矿集中区;在我国伊犁盆地南缘、吐哈盆地西南缘,也已经发现了多个可地浸砂岩型铀矿床,在伊犁盆地南缘的库捷尔太已经建立了我国第一个地浸砂岩型铀矿采矿基地。现有测年数据表明,伊犁盆地南缘砂岩型铀成矿年龄主要发生于中新世以后。野外地质调查发现,中新世早期的构造变形对伊犁盆地南缘砂岩型铀矿成矿的控制作用十分重要:中新世早期的褶皱变形导致了成矿目的层(侏罗系含煤地层)在盆地南部发生倾斜,使盆地南部构成稳定的斜坡带,形成了完善的地下水补-径-排体系,为长期大规模的成矿作用提供了构造环境。此外,矿石U-Pb法测年结果,表明吐哈盆地哈密凹陷西南缘在中新世早期(28Ma)也发生了一期重要的铀成矿作用。

七、小结

总之,发生于中新世早期的构造变形在青藏高原北缘及其邻区十分普遍,其动力来源应该来自于南侧印度板块与亚洲大陆的碰撞和汇聚作用,与两大陆之间汇聚速率的变化有关;但是由于存在地域上的差异,构造事件发生的时间也存在差异,往北变形发生的时间变年轻;该期的构造变形导致了青藏高原北缘山脉出现了第一次的快速隆升和剥露,使天山山脉经历了一期快速的剥露作用,也导致了塔里木盆地地貌地势的改变,及其相伴随的塔里木、准噶尔盆地的气候变化,促使了新疆“三山夹两盆地”地貌构造格局雏形的形成;与此同时,该期构造变形对我国西部砂岩型铀矿成矿的控制作用十分显著,中新世也成为我国新疆中新生代盆地内砂岩型铀矿大规模成矿作用的起始时间。

参考文献

陈正乐,刘健,孙知明等.2005.阿尔金山脉新生代剥露历史-前陆盆地沉积记录.地质通报,24(4):8~14

陈正乐,张岳桥,王小凤等.2001.阿尔金山脉新生代隆升的裂变径迹证据.地球学报,22(5):413~418

韩效忠,李胜祥,蔡煜琦等.2004.伊犁盆地新构造运动特征及其与铀成矿关系.新疆地质,22(4):378~381

刘汉彬,夏毓亮,林锦荣等.2004.吐哈盆地砂岩型铀矿U-Pb同位素地质特征.地球学报,25(2):196~198

刘健,陈正乐,张红喜等.2003.准噶尔盆地西北部中新生代地层成铀能力探讨.地质力学学报,9(3):241~245

彭希龄.1998.新疆新构造运动的表现和特点.成都理工学院学报,25(2):169~181

王登红,李天德.2001.阿尔泰东部新生代火山岩的地球化学特点及构造环境.大地构造与成矿学,25(3):282~289

王军.1998.西昆仑卡日巴生岩体和苦子干岩体的隆升-来自磷灰石裂变径迹分析的证据.地质论评,44(4):435~442

孙知明.杨振宇.葛肖虹等.2004.柴达木盆地北缘古近系磁性年代学研究进展.地质通报,23(9~10):899~902

夏毓亮,林锦荣,侯艳先等.2002.伊犁盆地砂岩型铀成矿同位素地质特征.铀矿地质,18(3):150~154

肖序常,李廷栋主编.2000.青藏高原的构造演化与隆升机制.广州:广东科技出版社

新疆维吾尔自治区地质矿产局.1993.新疆维吾尔自治区区域地质志.北京:地质出版社,207~265

尹安.2001.喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长.地球学报,22(3):193~230

张前锋,胡霭琴,张国新等.1994.阿尔泰地区中、新生代岩浆活动的同位素年龄证据.地质化学,23(3):269~280

Chen Y.,Cogne J.P.,Courtillot V.,Tapponnier P.and Zhu X.Y.1993.Cretaceous paleomagnetic results from western Tibet and tectonic implications.Journal of Geophysical Research,98(B10):17981~17999

Chen Zhengle Xiaofeng Wang,Yin An,Chen Xuanhua,and Chen Bailin.2004.Cenozoic Left-slip Motion along the Central Altyn Tagh Fault as Inferred from the Sedimentary Record.International Geology Review,46:839~856

Chen Zhengle,Wang Xiaofeng,Feng Xiaohong,et al..2002.New evidence from stable isotope for the uplift of mountains in northern edge of the Qinghai-Tibetan plateau.Sciences in China(B),32(Suppl.):1~10

Clift P.,Lin J.,and Barckhausen U.2002.Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea.Marine and Petroleum Geology,19:951~970

Hendrix M.S.,Dumitru T.A.,and Graham S.A.1994.Late Oligocene-early Miocene unroofing in the Chinese Tian Shan:An early effect of the India-Asia collision.Geology,22,pp.487~490

Stock J.and Molnar P.1988.Uncertainties and implications of late Cretaceous and Tertiary position of North Amercia relative to the Farallon,Kula and Pacific Plates.Tectonics,7:1339~1384

(陈正乐,宫红良,李丽)




西藏高原的特点是什么!
风沙地貌、火山地貌等,奇特多样,千姿百态。2、概念范畴 ①青藏高原的简称,现多用于英文表述,指平均海拔4000米以上的亚洲中部高原,面积约 300万平方公里,位于中国及邻近国家境内。②仅指青藏高原的一部分,即平均海拔超过4500米的区域,最高海拔超过8800米,主要在中 国西藏自治区境内,面积约100万...

青藏高原平均海拔多少米
青藏高原是中国最大、世界海拔最高的高原,被称为“世界屋脊”、“第三极”,南起喜马拉雅山脉南缘,北至昆仑山、阿尔金山和祁连山北缘,西部为帕米尔高原和喀喇昆仑山脉,东及东北部与秦岭山脉西段和黄土高原相接,介于北纬二十六度至三十九度四十七分,东经七十三度十九分至一百零四度四十七分之间。青藏...

青藏高原与帕米尔高原与西西伯利亚与华北平原与印度河平原与恒河平原等...
南亚东部的大平原。由恒河及其支流冲积而成,恒河下游段与布拉马普特拉河汇合,组成下游平原与河口三角洲。西起亚穆 恒河平原纳河,东抵梅格纳河,北为西瓦利克山麓与印、尼国界线,南迄德干高原北缘,面积约51.6万平方公里。恒河平原西起亚穆纳河,东抵梅格纳河,北界西瓦利克山麓与印、尼边境,南...

第一阶梯主要地形区
。阿尔金山山脉,蒙语意为“有柏树的山”。山脉地处藏北高原北缘,南北界于柴达木盆地和塔里木盆地之间,东西与祁连山和昆仑山两大山系相连,其山脉东西长约730公里,南北宽约60-100公里,近似东西走向。山脉东西部两端高,中部较低(海拔在4000-4200米之间)。海拔5000米以上的区段发育着现代冰川。

西藏地区平均海拔多少米?
青藏高原是世界上隆起最晚、面积最大、海拔最高的高原,因而被称为“世界屋脊”,被视为南极、北极之外的“地球第三极”。西藏高原位于青藏高原的主体区域。青藏高原总的地势由西北向东南倾斜,地形复杂多样、景象万千,有高峻逶迤的山脉,陡峭深切的沟峡以及冰川、裸石、戈壁等多种地貌类型;全区平均...

世界主要地貌类型有哪些?
地势总特点 中国大陆西高东低,自西向东形成三大阶梯下降。第一级阶梯是青藏高原,高原面海拔多在4000~5000米,其上耸峙多座海拔超出7000米,甚至8000米的山峰,享有“世界屋脊”之称。第二阶梯是青藏高原的北缘与东缘到大兴安岭、太行山、巫山、雪峰山之间,包括了若干高原和盆地,盆地底部高低不一,高原...

我国面积最大的高原是哪个
2. 该高原南至喜马拉雅山脉南缘,北至昆仑山、阿尔金山和祁连山北缘,西接帕米尔高原和喀喇昆仑山脉,东连秦岭山脉西段和黄土高原。3. 青藏高原总面积约250万平方千米,地形上划分为藏北高原、藏南谷地、柴达木盆地、祁连山地、青海高原和川藏高山峡谷区等六个主要部分。4. 该高原不仅包括中国的西藏全部...

程维明学术经历
他还积极参与国家重点基础研究,如青藏高原形成演化及其环境、资源效应项目(1999-2003),和中国西部干旱区生态环境演变与调控研究(1999-2003),展示了他在环境科学领域的卓越贡献。程维明在国际上也有活跃的表现,如2009年参加中国地理学会百年庆典并作专题报告,展现了他在国内外学术界的影响力。2004年至...

中国十大山脉排名中国十大山脉海拔
2、昆仑山脉昆仑山脉西起帕米尔高原,东至四川盆地西缘,长2500公里,海拔5000米以上,有些山峰达7000米。它向东延伸分为三个支脉:南支可可西里山一巴颜喀拉山,北支祁曼塔格山,中文阿尔格山一祁连山,构成青藏高原北缘。3、秦岭山脉秦岭山脉西起陇南,东达滩河和长江下游之间,长1500公里,山势西高东...

四大高原是哪四个
号称“世界屋脊”、“第三极”,它南起喜马拉雅山脉南缘,北至昆仑山、阿尔金山和祁连山北缘,西部为帕米尔高原和喀喇昆仑山脉,东北部与秦岭山脉西段、黄土高原相接,总面积约250万平方千米,内部又为藏北高原(羌塘高原)、藏南谷地、柴达木盆地、祁连山地、青海高原、川藏高山峡谷区6个部分。

古城区17330112573: 构造运动时期 - 青藏高原隆起的时期、过程、各时期构造运动情况青藏高原的隆起分为几
海俊易路: 青藏高原的隆起是一个多阶段、不等速和非均变的复杂过程.对此,国内外学者有着不同的观点.我国学者认为青藏高原的地壳增厚到几乎双倍于正常地壳的厚度是在始新...

古城区17330112573: 世界上最大的黄土高原为何会“挺立”中国北方?
海俊易路: 我国科学家最近研究发现,我国黄土高原发育风尘堆积的各种环境条件在2200万年前就已形成,并持续发展至今.那时,逐渐隆起的青藏高原以它那“伟岸”的身躯改变了...

古城区17330112573: 喜马拉雅山脉和青藏高原的发展趋势是怎样的,从地壳活厚度看青藏高原要比喜马拉雅山还厚原因是... -
海俊易路:[答案] 1.1 高原隆起的阶段性 青藏高原的隆起是一个多阶段、不等速和非均变的复杂过程.对此,国内外学者有着不同的观点.我国学者认为青藏高原的地壳增厚到几乎双倍于正常地壳的厚度是在始新世中期到中新世早期亚洲板块和印度板块的碰撞后开始产...

古城区17330112573: 黄土高原是什么地质构造 -
海俊易路: 一、自然地理概况 本实习区位于甘肃省天水市北道区东南的西秦岭地段,中心西北距天水市(秦城区)约41km.其地理坐标为:东经105°56′~106°10′,北纬:34°10′~34°30′.区内包括了以地质地貌为主体的麦积山丹霞地貌和人文景观区,...

古城区17330112573: 地层类型有哪些? -
海俊易路: 1.陆相地层第四纪阶段陆相地层的主要类型如下.(1)冰碛层集中分布于西部地层区,全为山岳冰川堆积类型.天山、阿尔泰、西昆仑、东昆仑、祁连的冰碛层大致有了测年数据控制,喜马拉雅、岷山、龙门山至滇西北的冰碛层大多缺乏测年资料...

古城区17330112573: 请问该如何评价中国的地貌 -
海俊易路: 中国大陆西高东低,自西向东形成三大阶梯下降.第一级阶梯是青藏高原,高原面海拔多在4000~5000米,其上耸峙多座海拔超出7000米,甚至8000米的山峰,享有“世界屋脊”之称.第二阶梯是青藏高原的北缘与东缘到大兴安岭、太行山、...

古城区17330112573: 火山主要分布在什么地方?产物是什么? -
海俊易路:[答案] 中国火山分布 ①东北地区是中国新生代火山最多地区,共有34个火山群,计640余座火山,并有大面积的熔岩被.主要分布... 目前火山仍处微弱活动过程. ⑤在羌塘(藏北)高原北部,由于上新世以来青藏高原强烈隆起,伴随着强烈的地壳运动,留下...

古城区17330112573: 为什么汶川地震/]
海俊易路:印度板块向亚洲板块俯冲,造成青藏高原快速隆升.高原物质向东缓慢流动,在高原东缘沿龙门山构造带向东挤压,遇到四川盆地之下刚性地块的顽强阻挡,造成构造应力能量的长期积累,最终在龙门山北川——映秀地区突然释放. 逆冲、右...

古城区17330112573: 九寨沟景区几月份温度降到零下 -
海俊易路: 三月初要冷些,只几度, 下半月去会暖和些,白天有十几度,但晚上也会冷,还是要多注意保暖,

古城区17330112573: 青藏地区突出的自然环境特征 -
海俊易路: 简要地说:高寒、缺氧、冻土、脆弱的生态!

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网