发现端粒和端粒酶是如何保护染色体的

作者&投稿:钊褚 (若有异议请与网页底部的电邮联系)
三位美国科学家由于在端粒和端粒酶方面的重大发现获得了2009年的诺贝尔生理学或医学奖.端粒是染色体末端~

(1)根据题干信息“待端粒缩短至一定程度则细胞不能继续分裂而逐渐走向衰老和凋亡“可知,随着细胞中端粒长度的缩短,细胞的增殖能力将逐渐下降.②心肌细胞和④成熟红细胞都已经高度分化,不再分裂,而①胚胎干细胞和③造血干细胞都具有较强的分裂能力,因此具有端粒酶活性的是①③.(2)根据题干信息“端粒酶由RNA和蛋白质构成,能够利用自身RNA为模板使端粒末端的DNA重复序列得以延长”可知,端粒酶催化的反应过程中,遗传信息由RNA→DNA.此过程中合成的是DNA,需要的原料为3种脱氧核苷酸(腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸).(3)细胞膜表面也会出现一些不同于正常细胞的蛋白质,这些蛋白质会成为抗原,引起机体的免疫应答.在应答中,效应T细胞可直接与癌细胞密切接触并使之裂解.除常规的癌症治疗方法外,通过寻找能够抑制癌细胞中端粒酶活性的物质也使癌症的治疗成为一种可能.故答案为:(1)下降 ①③细胞具有较强的分裂能力(2)从RNA到DNA(或“RNA→DNA”) 脱氧核苷酸(3)抗原 效应T细胞 抑制

老师不是讲了吗……3名美国科学家以染色体端粒和端粒酶研究拿下2009年度诺贝尔生理学或医学奖。  这是诺贝尔生理学或医学奖第100次确定获奖者,也是首次由两名女性同时摘得这一奖项。凭借“发现端粒和端粒酶是如何保护染色体的”这一成果,他们揭开了人类衰老和罹患癌症等严重疾病的奥秘。  对人类很重要  在生物的细胞核中,有一种易被碱性染料染色的线状物质,它们被称为“染色体”。正常人的体细胞有23对染色体,它们对人类生命具有重要意义,例如众所周知,决定男女性别的就是一对染色体。在染色体的末端部分有一个像帽子一样的特殊结构,这就是端粒。而端粒酶的作用则是帮助合成端粒,使得端粒的长度等结构得以稳定。  “染色体携有遗传信息。端粒是细胞内染色体末端的‘保护帽’,它能够保护染色体,而端粒酶在端粒受损时能够恢复其长度。”获奖者之一的伊丽莎白·布莱克本介绍说:“伴随着人的成长,端粒逐渐受到‘磨损’。于是我们会问,这是否很重要?而我们逐渐发现,这对人类而言确实很重要。”  促使开发新疗法  卡罗林斯卡医学院发布的新闻公报说,这3名科学家的发现“解释了端粒如何保护染色体的末端以及端粒酶如何合成端粒”。借助他们的开创性工作,如今人们知道,端粒不仅与染色体的个性特质和稳定性密切相关,而且还涉及细胞的寿命、衰老与死亡等等。简单地说,端粒变短,细胞就老化。相反,如果端粒酶活性很高,端粒的长度就能得到保持,细胞的老化就被延缓。  不过需要指出的是,近年来陆续有研究发现,端粒和染色体等虽然与细胞老化有关,进而影响衰老,但并非唯一的因素,“生命衰老是一个非常复杂的进程,它有许多不同的影响因素,端粒仅仅是其中之一”。  “这是有关人类衰老、癌症和干细胞等研究的谜题拼图中重要的一片,”新闻公报说,“他们的发现使我们对细胞的理解增加了新的维度,清楚地显示了疾病的机理,并将促使我们开发出潜在的新疗法。”  突破“三道门”  诺贝尔生理学或医学奖一般颁给在相关领域实现特定突破的研究人员。卡罗林斯卡医学院教授鲁内·托夫特戈德说,端粒和端粒酶研究有助于攻克医学领域3方面难题,即“癌症、特定遗传病和衰老”。  端粒位于染色体末端,能阻碍细胞老化。如果端粒变小,细胞会加剧老化。布莱克本和格雷德在研究中发现一种能够促成端粒生成的酶即端粒酶,而癌细胞利用端粒酶实现扩散。绍斯塔克所做研究则加深了人们对端粒作用的了解。  汉松说,研究人员可依据布莱克本等人所获突破进一步开发血液病、皮肤病和肺病的治疗手段。  获奖难抑兴奋  “我感到有些颤抖,我在想,这种荣誉的认可对于由求知欲驱动的基础科研是多么多么的美妙……”接到诺贝尔奖评选委员会来自瑞典的获奖电话通知时,美国科学家卡萝尔·格雷德刚刚起床,正在忙着洗熨衣服。  瑞典卡罗林斯卡医学院5日宣布,将2009年诺贝尔生理学或医学奖授予3名美国科学家伊丽莎白·布莱克本、卡萝尔·格雷德和杰克·绍斯塔克,以表彰他们“发现端粒和端粒酶是如何保护染色体的”。根据诺贝尔奖的惯例,每年的获奖候选人名单在50年内都不对外公开,只在揭晓那一刻宣布得主的名字,并通过电话通知这些获奖者。今年的3名诺贝尔奖得主在获知得奖的刹那都感到“狂喜不已”。  突如其来的获奖消息显然令绍斯塔克也十分激动,他说:“我期待能举办一个大型的聚会,来庆祝获得这一声望很高的奖项。”  因战争等原因,诺贝尔生理学或医学奖曾9次空缺。今年是这一奖项自1901年以来第100次确定获奖人选。按照惯例,一项诺贝尔奖最多由3人共享。3名获奖者将分享1000万瑞典克朗(约合142.7万美元)奖金。  美国学者高度评价  美国科学家伊丽莎白·布莱克本、卡萝尔·格雷德和杰克·绍斯塔克因为发现端粒和端粒酶保护染色体的机制而获得2009年诺贝尔生理学或医学奖。消息公布后,美国相关学者对他们的成就给予高度评价。  约翰斯·霍普金斯大学基础生物医学研究所所长斯蒂芬·德西德里奥说:“最深远的科学发现一般都来自基础科学研究,我们对卡萝尔的成就得到认可感到激动,这也再次提醒我们,在好奇心驱动下,科学具有强大力量。”  但是杰克·绍斯塔克目前就职的马萨诸塞综合医院对此次获奖的回应却别具一格。该医院的新闻发言人休·格里维伊在接受记者采访时说,绍斯塔克目前的研究领域已不包括对端粒的进一步研究,因此关于端粒和端粒酶研究成果的问题最好请另外两位获奖者回答。  人物资料  2009年诺贝尔生理学或医学奖得主  ●伊丽莎白·布莱克本拥有美国和澳大利亚双重国籍。她1948年出生于澳大利亚,在澳大利亚墨尔本大学修完大学课程后,又于1975年拿到了英国剑桥大学博士学位。布莱克本曾在美国耶鲁大学任博士后研究员,并曾任教于美国加利福尼亚大学伯克利分校,自1990年开始担任美国加利福尼亚大学旧金山分校生物学和生理学教授。伊丽莎白·布莱克本因学术成就卓著曾被美国《时代》周刊评为年度全球最具影响力的100个人物之一。  ●卡萝尔·格雷德,美国人。她于1961年出生在美国加利福尼亚州,曾先后就读于加利福尼亚大学圣巴巴拉分校和伯克利分校,并于1987年获得博士学位,其导师正是伊丽莎白·布莱克本。格雷德曾在美国科尔德斯普林实验室从事博士后研究,从1997年起她开始担任约翰斯·霍普金斯大学医学院教授。  ●杰克·绍斯塔克,美国人。1952年生于伦敦,在加拿大长大。他曾先后就读于加拿大麦基尔大学和美国康奈尔大学,并于1977年在康奈尔大学获得博士学位。绍斯塔克自1979年开始在哈佛大学医学院任教,目前是马萨诸塞综合医院遗传学教授,并同时任职于美国霍华德·休斯医学研究所。  生理学或医学奖颁奖词节选  “携带基因信息的DNA线状长分子挤压形成染色体,端粒就像一顶高帽子置于染色体头上。伊丽莎白·布莱克本和杰克·绍斯塔克发现端粒的一种独特DNA序列能保护染色体免于退化。卡萝尔·格雷德和伊丽莎白·布莱克本确定了端粒酶,端粒酶是形成端粒DNA的成分。这些发现解释了染色体的末端是如何受到端粒的保护的,而且端粒是由端粒酶形成的。”  相关背景  近年的得主及主要成就  ●2008年,德国科学家哈拉尔德·楚尔·豪森及法国科学家弗朗索瓦丝·巴尔-西诺西和吕克·蒙塔尼。豪森发现了人乳头状瘤病毒(HPV),这种病毒是导致宫颈癌的罪魁祸首。巴尔-西诺西和蒙塔尼的获奖成就则是发现了艾滋病病毒(HIV)。  ●2007年,美国科学家马里奥·卡佩基、奥利弗·史密斯和英国科学家马丁·埃文斯。他们的一系列突破性发现为“基因靶向”技术的发展奠定了基础,使深入研究单个基因在动物体内的功能并提供相关药物试验的动物模型成为可能。  ●2006年,美国科学家安德鲁·法尔和克雷格·梅洛。他们发现了核糖核酸(RNA)干扰机制,这一机制已被广泛用作研究基因功能的一种手段,并有望在未来帮助科学家开发出治疗疾病的新方法。  ●2005年,澳大利亚科学家巴里·马歇尔和罗宾·沃伦。他们发现了导致人类罹患胃炎、胃溃疡和十二指肠溃疡的罪魁——幽门螺杆菌,革命性地改变了世人对这些疾病的认识。  ●2004年,美国科学家理查德·阿克塞尔和琳达·巴克。他们在气味受体和嗅觉系统组织方式研究中作出贡献,揭示了人类嗅觉系统的奥秘。  ●2003年,美国科学家保罗·劳特布尔和英国科学家彼得·曼斯菲尔德。他们在核磁共振成像技术上获得关键性发现,这些发现最终导致核磁共振成像仪的出现。  ●2002年,英国科学家悉尼·布雷内、约翰·苏尔斯顿和美国科学家罗伯特·霍维茨。他们为研究器官发育和程序性细胞死亡过程中的基因调节作用作出了重大贡献。  ●2001年,美国科学家利兰·哈特韦尔、英国科学家保罗·纳斯和蒂莫西·亨特。他们发现了导致细胞分裂的关键性调节机制,这一发现为研究治疗癌症的新方法开辟了途径。 我是* * * *

今年诺贝尔生理学或医学奖授予了3名美国科学家,以表彰他们“发现端粒
和端粒酶是如何保护染色体的”,让一般公众第一次听说“端粒”这个术语。

这几天在网上搜索这个名词解释的人想必不少。虽然曾经有一位知名时评家
教育我们,现而今维基百科完全可以替代科普文章了,但是还是有资深科技记者
抱怨说,看了半天维基百科有关端粒的解释也没看懂。如果没有相应的生物学知
识,的确是不容易看懂的。于是国内报道纷纷以讹传讹说端粒酶“这种染色体的
自然脱落物将引发衰老和癌症”云云。

端粒酶并不是什么“染色体的自然脱落物”,三位获奖科学家的研究当初也
不是抱着揭开人类衰老和癌症之谜这么实际的动机,而是想要解决遗传学上的一
个难题,它涉及到细胞中的遗传信息是怎么被完整地复制下去的。

每个细胞中都有一整套遗传信息,它们是用一类叫做核苷酸的化学物质来编
写的。这样的核苷酸共有四种,分别简称A、T、G、C,这就是编写遗传信息的
“字母”,它们的排列组合就是遗传信息的编码。许许多多“字母”一个挨一个
互相连接,组成一条长长的链条,也就是我们经常听到的遗传物质DNA。

每个DNA分子实际上是两条链条绞在了一起。这两条链条并不是随随便便放一
块的,而是按照A配T,G配C的方式一一对应起来,也就是说,如果一条链上的某
个位置是A,那么在另一条链上的相应位置必然是T。如果已有了一条DNA链,就可
以根据配对的原则,用零散的“字母”合成另一条链,遗传信息就是这么复制下
去的。

组成DNA的“字母”是核苷酸。核苷酸的基本结构是一个5个碳原子组成的环,
环上连着碱基、磷酸基和羟基。它们各有用处:碱基决定了这个核苷酸是什么
“字母”,而磷酸基和羟基是连接各个核苷酸的桥梁。某个核苷酸的磷酸基和前
面核苷酸的羟基结合,一个个地串起来形成DNA链。这样,在这条链的一端,就
剩下一个磷酸基没有结合,根据磷酸基在碳环上的位置,我们把它叫做5'端;而在
链的另一端,则剩下一个羟基没有结合,我们把它叫做3'端。如果一条DNA链的
走向是5'端到3'端,那么和它配对的另一条链的走向就是3'端到5'端。

细胞分裂的时候,一分为二变成两个子细胞,原来的遗传信息也要复制一分
传给子细胞。这时,原先结合在一起的两条DNA链在中间分开,一边分开,一边各
以其中的一条旧链做为模板,按配对的原则合成新的DNA链,组成两个DNA分子。
这个过程需要一种叫做聚合酶的蛋白质来完成。聚合酶只能合成5'->3'方向的DNA,
而且前面必须已先有DNA或RNA(和DNA类似但不完全相同的物质)做为引物才能开
始合成。问题就来了。其中一条旧链的起点是3',聚合酶用它做为模板合成一条
5'->3'的新链,可以一直合成下去。但是另一条旧链的起点是5',聚合酶没法用
它做模板合成3'->5'方向的DNA。

怎么办呢?细胞解决这个问题的办法是在这条旧链的起点前面的某个地方
放一小段RNA做为引物,聚合酶就从这个引物开始合成一小段5'->3'的DNA,一直
合成到复制起点。然后在前面再放一段RNA引物,再合成一小段DNA……最后就出
现了许多小段的DNA,被许多RNA引物分隔开。然后,这些RNA引物被清除掉,由
另一种聚合酶填补上DNA,这样就形成了一条完整的DNA新链了。

这条DNA新链真的就完整了吗?并没有。聚合酶在填补引物留下的空缺时,前
面必须已有DNA在那里,它才能往上填。对那些在中间的空缺,这没有问题。但是
在最末端的那段空缺,前面没有DNA,它就填不了了。这样,DNA每复制一次,末
端就会丢失一截。

人体细胞的遗传信息分布在46条染色体上,一条染色体就是一条DNA双链。
细胞每分裂一次,染色体也复制一次,染色体末端就要丢失一截,相当于遗传
信息少了一小段文字。遗传信息的复制必须非常忠实,有时改变一个字母都会引起
突变导致大麻烦,何况每复制一次少一段文字呢?

所以细胞必定有某种办法来保护染色体末端的信息不丢失。这个巧妙的办法
就是今年诺贝尔奖获得者发现的:在染色体末端有一长串不带遗传信息的DNA,
叫做端粒。这样染色体每次复制时丢失的是一小段端粒,不会影响到染色体携带的
遗传信息的完整性。

但是染色体每复制一次端粒就短一截,复制几十次后端粒就没了,这时如果
继续复制下去,遗传信息就要开始丢失了,细胞就会病变、死亡。所以一般细胞只
能分裂几十次就衰老、死亡,不能无限分裂下去。有一个学说认为细胞分裂次数有
限就是衰老的原因,而这是由于端粒越来越短导致的。

如果有办法修复端粒,是不是就能永葆青春了呢?今年诺贝尔奖获得者的
另一个发现是,在细胞中有一种叫端粒酶的蛋白质,能修复端粒。但是在一般的细
胞中端粒酶的活性非常低,起不到什么作用。不过有一类细胞的端粒酶活性倒是非
常强,因此它们可以无限地分裂下去,长生不老,那就是——癌细胞!

所以如果我们想要长生不老而去增强端粒酶的活性,反而可能搞得到处长癌。
不过,我们可以根据癌细胞的这个特点,研制出针对端粒酶的疫苗,就有可能用来
预防、治疗癌症。现在就有一些这类药物在进行临床研究。这是当初意料不到的。
对端粒的研究,本来只是科学家们出于好奇,要解决遗传学的一个难题而已。

端粒是真核细胞内染色体末端的DNA重复片断,经常被比做鞋带两端防止磨损的塑料套,由富含G的核酸重复序列和许多蛋白质组成,包括Ku70、Ku80、依赖DNA的蛋白激酶和端粒重复序列结合因子2(TRF2)等。功能是完成染色体末端的复制,防止染色体免遭融合、重组和降解。染色体复制的上述特点决定了细胞分裂的次数是有限的,端粒的长度决定了细胞的寿命,故而被称为“生命的时钟”。

端粒酶(或端粒体酶)是一种能延长端粒末端的核糖蛋白酶,主要成分是RNA和蛋白质,其含有引物特异识别位点,能以自身RNA为模板,合成端粒DNA并加到染色体末端,使端粒延长,从而延长细胞的寿命甚至使其永生化[8]。端粒酶的激活或抑制会导致细胞永生化或进入分裂终止期。

正常人的体细胞有23对染色体。“端粒是细胞内染色体末端的‘保护帽’,它能够保护染色体,而端粒酶在端粒受损时能够恢复其长度。”伊丽莎白·布莱克本说:“伴随着人的成长,端粒逐渐受到‘磨损’。”

端粒不仅与染色体的个性特质和稳定性密切相关,而且还涉及细胞的寿命、衰老与死亡等等。简单地说,端粒变短,细胞就老化。相反,如果端粒酶活性很高,端粒的长度就能得到保持,细胞的老化就被延缓。


瑞粒酶的简介
端粒酶可延长染色体末端DNA,端粒酶的活化使细胞获得无限增殖能力。基于此,有少数细胞(如永生细胞系) 及绝大多数恶性肿瘤细胞(85%) 可逃逸这一危机点。因为在这些细胞中含有活化的端粒酶系统,从而使细胞获得无限增殖能力,使之永生化和恶变,因此,对端粒和端粒酶系统的研究,有助于阐明细胞衰老和恶变机制...

2009年得了诺贝尔奖的都有哪些人物
获得2009年诺贝尔生理学或医学奖的三位美国科学家,凭借“发现端粒和端粒酶是如何保护染色体的”这一成果,揭开了人类衰老和罹患癌症等严重疾病的奥秘。 在生物的细胞核中,有一种易被碱性染料染色的线状物质,它们被称为“染色体”。正常人的体细胞有23对染色体,它们对人类生命具有重要意义,例如众所周知,决定男女性别的...

端粒酶的结构功能及其与衰老和癌症的关系
生生不息”,无情地吞噬生命。3名美国科学家以染色体端粒和端粒酶研究拿下2009年度诺贝尔生理学或医学奖。这是诺贝尔生理学或医学奖第100次确定获奖者,也是首次由两名女性同时摘得这一奖项。凭借“发现端粒和端粒酶是如何保护染色体的”这一成果,他们揭开了人类衰老和罹患癌症等严重疾病的奥秘。

端粒及端粒酶的结构功能及生理意义
现对端粒、端粒酶抑制剂研究进展予以分类介绍.�� 1 控制端粒延长靶点的物质� 目前对端粒的研究表明,端粒是真核生物染色体末端的特殊结构,包含若干的DNA双链重复序列,其末端为含多个G的单链DNA. 不同物种端粒的重复序列和长度是不一样的,但每种生物体有其特定的序列和平均长度〔如人的端粒为(TTAGGG)n,...

端粒酶端粒DNA功能和端粒酶功能及生物特性
是当前研究热点之一。维护染色体稳定的关键在于端粒酶合成端粒DNA。没有端粒保护,末端会暴露,容易被外切酶分解。尽管端粒与生命长度有关的理论存在,但其确切影响尚未定论。端粒的合成并非由DNA聚合酶完成,而是端粒酶的职责,它利用RNA模板来合成端粒,确保染色体的完整性。

端粒酶是什么东西啊!
就如同寻找端粒酶抑制剂的基本理论,科学家也正积极地利用相同的策略,同时找寻端粒酶的活化剂。整体来说,老化和癌症的发生机制要比我们想象中的复杂,由于它们属于多重因子所造成的疾病,单一方向的预防和治疗并不足以涵盖全部的病因,端粒和端粒酶的研究只是探讨老化机制中的一环而已。端粒酶让人类看到长生...

如何看待人类寿命上限或为150岁,您认为长寿的秘诀是什么?
2009年,发现端粒和端粒酶是如何保护染色体的这个成果,让三位科学家获得了当年的诺贝尔生理奖(医学奖)。1961年美国学者海尔弗利根据实验观察,胚胎细胞分裂的次数是有规律的,而人体的细胞则是分裂到50代时,就会全部死亡,而分裂的周期大约是2.4年。因此从端粒的因素来看,人类的理论寿命应该是120岁。...

急求2006至2010年在生物、化学、医药、药学领域诺贝尔奖获得者及其...
瑞典卡罗林斯卡医学院5日宣布,将2009年诺贝尔生理学或医学奖授予美国科学家伊丽莎白·布莱克本、卡萝尔·格雷德和杰克·绍斯塔克,以表彰他们“发现端粒和端粒酶是如何保护染色体的”。瑞典皇家科学院7日宣布,美国科学家文卡特拉曼·拉马克里希南、托马斯·施泰茨和以色列科学家阿达·约纳特共同获得今年的诺贝尔...

09年7月到2010年4月国内外事件 考试的时事政治要求的 谢谢谢谢.._百度...
3、瑞典卡罗林斯卡医学院10月5日宣布,将2009年诺贝尔生理学或医学奖授予美国科学家伊丽莎白·布莱克本、卡萝尔·格雷德和杰克·绍斯塔克,以表彰他们“发现端粒和端粒酶是如何保护染色体的”。伊丽莎白·布莱克本拥有美国和澳大利亚双重国籍,她和卡萝尔·格雷德都是女性科学家,两人分别出生于1948年和1961年。两位女性同获一个奖...

端粒酶简介
可是即使假设人体具有了端粒酶,长生也是个值得打上问号的问题。因为端粒酶仅仅解决了复制长度的问题,并不能解决DNA复制时的变异问题,当然这有专门的机构来负责。可是这也说明,长生并非如想像中那么简单,不单单一个端粒酶就能解决。 5.2 端粒与抗衰老 端粒是什么? 端粒是染色体末端的一段DNA片段。 排在线上的DNA决...

潍城区18150522914: 染色体是如何被端粒和端粒酶保护的? -
愈万万苏:[答案] 摘要:端粒对维持染色体的稳定和延长细胞寿命至关重要,其长度的维持有赖于端粒酶的存在,布莱克本和绍斯塔克发现端粒中的一种独特DNA序列能保护染色体免于退化.格雷德和布莱克本发现了端粒酶及其作用,这些发现揭示了端粒形成和端粒...

潍城区18150522914: 端粒和端粒酶是如何保护染色体的? -
愈万万苏: 端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT.在酵母和人中,端粒序列分别为C1-3A/TG1-3和TTAGGG/CCCTAA,并有许多蛋白与端粒DNA结合.端粒DNA主要功能有:第一,保护染色体不被核酸酶...

潍城区18150522914: 发现端粒和端粒酶如何保护染色体用的是什么方法 -
愈万万苏: 补充和更正一下一楼. 端粒是染色体两端的重复编码区,每次染色体复制,端粒就会缩短.保护了中间正常编码序列的稳定.缩短到一定程度,就无法保护了,于是DNA复制紊乱.端粒酶在端粒短到一定程度时起作用,补充缩短的端粒.这是端粒酶有活性的时候.但是一般细胞端粒酶活性很低或者没有活性.生殖细胞和癌细胞除外.

潍城区18150522914: 研究发现:端粒在不同物种细胞中对于保持染色体稳定性和细胞活性有重要作用,端粒酶是一种逆转录酶,能延长缩短的端粒(缩短的端粒其细胞复制能力... -
愈万万苏:[答案] (1)①PSG-AS ③端粒酶活性、细胞凋亡情况、细胞生长情况 (2)选择 标记基因 (3)RNA 4种脱氧核苷酸 (4)从结果可知PSG-AS导入肝癌细胞发挥作用后,端粒酶活性降低,细胞凋亡率升高,细...

潍城区18150522914: 美国科学家伊丽莎白·布莱克本、卡萝尔·格雷德和杰克·绍斯塔克因“发现端粒和端粒酶是如何保护染色体的”,而获得2009年诺贝尔生理学或医学奖.... -
愈万万苏:[选项] A. 端粒与二苯胺试剂在沸水浴条件下供热显蓝色 B. 端粒酶催化端粒延长是逆转录过程 C. 端粒酶中蛋白质成分相当于一种逆转录酶 D. 将双缩脲试剂A液和B液混合后滴加到待测端粒酶样液可以鉴定端粒酶的成分

潍城区18150522914: 获得2009年诺贝尔生理学或医学奖的三位美国科学家,凭借“发现端粒和端粒酶是如何保护染色体的”这一成果,揭开了人类衰老和罹患癌症等严重疾病的奥... -
愈万万苏:[答案] 材料1(1)分析题干信息可知,实验的目的是探究端粒酶与细胞癌变的关系,实验的自变量是端粒酶的活性,可以通过加入端粒酶抑制进行控制,因变量的细胞癌变率,由于癌细胞的特点之一是能无限增殖,因此可以用细胞增殖...

潍城区18150522914: 发现端粒和端粒酶如何保护染色体的目的是什么 -
愈万万苏: 目的是为了搞清楚,细胞无限增殖时,染色体缩短的原因,端粒和端粒酶有保护其,不让染色体缩短的作用.人类对其的研究的最终目的,是为了研究正常细胞怎么转化成干细胞!

潍城区18150522914: 何谓端粒DNA?端粒酶的特性及生物学特性是什么? -
愈万万苏:[答案] 端粒(Telomere)是真核细胞染色体末端的特殊结构.人端粒是由6个碱基重复序列(TTAGGG)和结合蛋白组成.端粒有重要的生物学功能,可稳定染色体的功能,防止染色体DNA降解、末端融合,保护染色体结构基因,调节正常细胞生长.正常细胞...

潍城区18150522914: 端粒的结构和功能, -
愈万万苏:[答案] 端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长及寿命方面具有重要作用,并与细胞凋亡、细胞转化...

潍城区18150522914: 端粒是位于真核细胞染色体两端的保护结构(图甲),具有保持染色体的完整性和控制细胞分裂周期的作用,DNA分子每分裂复制一次,端粒就缩短一点.端... -
愈万万苏:[答案] (1)“端粒是位于真核细胞染色体两端的保护结构”,物质组成是DNA和蛋白质,其复制发生在有丝分裂过程中.(2)由图乙可知,端粒酶以自身的RNA为模板合成端粒子DNA的一条链,是一种逆转录酶,在细胞核中发挥作用....

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网