气体动理论的简史

作者&投稿:达奚沸 (若有异议请与网页底部的电邮联系)
空气动力学的发展简史~

空气动力学的发展简史
最早对空气动力学的研究,可以追溯到人类对鸟或弹丸在飞行时的受力和力的作用方式的种种猜测。17世纪后期,荷兰物理学家惠更斯首先估算出物体在空气中运动的阻力;1726年,牛顿应用力学原理和演绎方法得出:在空气中运动的物体所受的力,正比于物体运动速度的平方和物体的特征面积以及空气的密度。这一工作可以看作是空气动力学经典理论的开始。
1755年,数学家欧拉得出了描述无粘性流体运动的微分方程,即欧拉方程。这些微分形式的动力学方程在特定条件下可以积分,得出很有实用价值的结果。19世纪上半叶,法国的纳维和英国的斯托克斯提出了描述粘性不可压缩流体动量守恒的运动方程,后称为纳维-斯托克斯方程。
到19世纪末,经典流体力学的基础已经形成。20世纪以来,随着航空事业的迅速发展,空气动力学便从流体力学中发展出来并形成力学的一个新的分支。
航空要解决的首要问题是如何获得飞行器所需要的举力、减小飞行器的阻力和提高它的飞行速度。这就要从理论和实践上研究飞行器与空气相对运动时作用力的产生及其规律。1894年,英国的兰彻斯特首先提出无限翼展机翼或翼型产生举力的环量理论,和有限翼展机翼产生举力的涡旋理论等。但兰彻斯特的想法在当时并未得到广泛重视。
约在1901~1910年间,库塔和儒科夫斯基分别独立地提出了翼型的环量和举力理论,并给出举力理论的数学形式,建立了二维机翼理论。1904年,德国的普朗特发表了著名的低速流动的边界层理论。该理论指出在不同的流动区域中控制方程可有不同的简化形式。
边界层理论极大地推进了空气动力学的发展。普朗特还把有限翼展的三维机翼理论系统化,给出它的数学结果,从而创立了有限翼展机翼的举力线理论。但它不能适用于失速、后掠和小展弦比的情况。1946年美国的琼期提出了小展弦比机翼理论,利用这一理论和边界层理论,可以足够精确地求出机翼上的压力分布和表面摩擦阻力。
近代航空和喷气技术的迅速发展使飞行速度迅猛提高。在高速运动的情况下,必须把流体力学和热力学这两门学科结合起来,才能正确认识和解决高速空气动力学中的问题。1887~1896年间,奥地利科学家马赫在研究弹丸运动扰动的传播时指出:在小于或大于声速的不同流动中,弹丸引起的扰动传播特征是根本不同的。
在高速流动中,流动速度与当地声速之比是一个重要的无量纲参数。1929年,德国空气动力学家阿克莱特首先把这个无量纲参数与马赫的名字联系起来,十年后,马赫数这个特征参数在气体动力学中广泛引用。
小扰动在超声速流中传播会叠加起来形成有限量的突跃——激波。在许多实际超声速流动中也存在着激波。气流通过激波流场,参量发生突跃,熵增加而总能量保持不变。
英国科学家兰金在1870年、法国科学家许贡纽在1887年分别独立地建立了气流通过激波所应满足的关系式,为超声速流场的数学处理提供了正确的边界条件。对于薄冀小扰动问题,阿克莱特在1925年提出了二维线化机冀理论,以后又相应地出现了三维机翼的线化理论。这些超声速流的线化理论圆满地解决了流动中小扰动的影响问题。
在飞行速度或流动速度接近声速时,飞行器的气动性能发生急剧变化,阻力突增,升力骤降。飞行器的操纵性和稳定性极度恶化,这就是航空史上著名的声障。大推力发动机的出现冲过了声障,但并没有很好地解决复杂的跨声速流动问题。直至20世纪60年代以后,由于跨声速巡航飞行、机动飞行,以及发展高效率喷气发动机的要求,跨声速流动的研究更加受到重视,并有很大的发展。
远程导弹和人造卫星的研制推动了高超声速空气动力学的发展。在50年代到60年代初,确立了高超声速无粘流理论和气动力的工程计算方法。60年代初,高超声速流动数值计算也有了迅速的发展。通过研究这些现象和规律,发展了高温气体动力学、高速边界层理论和非平衡流动理论等。
由于在高温条件下会引起飞行器表面材料的烧蚀和质量的引射,需要研究高温气体的多相流。空气动力学的发展出现了与多种学科相结合的特点。
空气动力学发展的另一个重要方面是实验研究,包括风洞等各种实验设备的发展和实验理论、实验方法、测试技术的发展。世界上第一个风洞是英国的韦纳姆在1871年建成的。到今天适用于各种模拟条件、目的、用途和各种测量方式的风洞已有数十种之多,风洞实验的内容极为广泛。
20世纪70年代以来,激光技术、电子技术和电子计算机的迅速发展,极大地提高了空气动力学的实验水平和计算水平,促进了对高度非线性问题和复杂结构的流动的研究。
除了上述由航空航天事业的发展推进空气动力学的发展之外,60年代以来,由于交通、运输、建筑、气象、环境保护和能源利用等多方面的发展,出现了工业空气动力学等分支学科。

17世纪中叶以前,人们对空气和气体的认识还是模糊的,到了18世纪,通过对燃烧现象和呼吸作用的深入研究,人们才开始认识到气体的多样性和空气的复杂性。

18世纪初,一位爱好植物学的英国牧师黑尔斯(S.Hales,1677—1761)发明了集气槽,改进了水上集气法。

1772年卢瑟福(D.Rutherford,英,1749—1819)在密闭容器中燃烧磷,除去寻常空气中可助燃和可供动物呼吸的气体,对剩下的气体进行了研究,发现这种气体不被碱液吸收,不能维持生命和具有可以灭火的性质,因此他把这种气体叫做“浊气”或“毒气”。同年英国化学家普利斯特里(J.Priestley,1733—1804)也了解到木炭在密闭于水上的空气中燃烧时,能使1/5的空气变为碳酸气,用石灰水吸收后,剩下的气体,不助燃也不助呼吸。

1774年普利斯特里利用一个直径为一英尺的聚光镜来加热各种物质,看看它们是否会分解放出气体,他还用汞槽来收集产生的气体,以便研究它们的性质。那年8月1日他如法加热汞煅灰(即氧化汞),发现蜡烛在分解出的“空气”中燃烧,放出更为光亮的火焰;他又将老鼠放在这种气体中,发现老鼠比在同体积的寻常空气中活的时间约长了4倍。可以说,普利斯特利发现了氧。遗憾的是他和卢瑟福等都坚信当时的“燃素说”。从而错误地认为:这种气体不含燃素,所以有特别强的吸收燃素的能力,因而能够助燃,当时他把氧气称之为“脱燃素空气”,把氮气称之为“被燃素饱和了的空气”。

事实上,瑞典化学家舍勒(C.W.Scheele,1742—1786)在卢瑟福和普利斯特里研究氮气的同时,于1772年也从事这一研究,他可算是第一个认为氮是空气成分之一的人。他曾于1773年用硝酸盐(硝酸钾和硝酸镁)、氧化物(氧化汞)加热,制得“火气”(fire air),并用实验证明空气中也存在“火气”。

综上所述,可见舍勒和普利斯特里虽然都独立地发现并制得氧气,但正如恩格斯指出的:由于他们被传统的燃素说所束缚,“从歪曲的、片面的、错误的前提出发,循着错误的、弯曲的、不可靠近的途径行进,往往当真理碰到鼻尖上的时候还是没有得到真理”(《自然辩证法》)。

法国化学家拉瓦锡(A.L.Lavoisier,1743—1794)较早地运用天平作为研究化学的工具,在实验过程中重视化学反应中物质质量的变化。当他知道了普利斯特里从氧化汞中制取氧气(当时称之为脱燃素空气)的方法后,就做了一个著名的研究空气成分的实验(见《九年义务教育三年制初级中学.化学.全一册》第一章阅读材料)。他摆脱了传统的错误理论(燃素说)的束缚,尊重事实,对实验作了科学的分析和判断,揭示了燃烧是物质跟空气里的氧气发生了反应,指出物质里根本不存在一种所谓燃素的特殊东西。1777年,拉瓦锡在接受其他化学家见解的基础上,认识到空气是两种气体的混合物,一种是能助燃,有助于呼吸的气体,并把它命名为“氧”,意思是“成酸的元素”(拉瓦锡当时认为,非金属燃烧后通常变为酸,氧是酸的本质,一切酸中都含有氧元素);另一种不助燃、无助于生命的气体,命名为氮,意思是“不能维持生命”。

1785年英国化学家卡文迪许(H.Cavendish 1731—1810)用电火花使空气中氮气跟氧气化合,并继续加入氧气,使氮气变成氮的氧化物,然后用碱液吸收而除去,剩余的氧气用红热的铜除去。但至终残余有1%的气体不跟氧气化合,当时就认为可能是一种新的气体,但这种见解却没有受到化学家们应有的重视。

经过百余年后,英国物理学家雷利(J.W.S.Rayteigh,1842—1919)于1892年发现从含氮的化合物中制得的氮气每升重1.250 5 g,而从空气中分离出来的氮气在相同情况下每升重1.257 2 g,虽然两者之差只有几毫克,但已超出了实验误差范围。所以他怀疑空气中的氮气中一定含有尚未被发现的较重的气体。雷利沿用卡文迪许的放电方法从空气中除去氧和氮;英国化学家拉姆塞(W.Ramsay,1852—1916)把已经除掉CO2、H2O和O2的空气通过灼热的镁以吸收其中的氮气,他们二人的实验都得到一些残余的气体,经过多方面试验断定它是一种极不活泼的新元素,定名为氩,原文是不活动的意思。

1868年8月18日在印度发生了日全蚀,法国天文学家严森(P.J.C.Janssen,1824一1907)从分光镜中发现太阳光谱中有一条跟钠D线不在同一位置上的黄线,这条光谱线是当时尚未知道的新元素所产生的。当时预定了这种元素的存在,并定名为氦(氦是拉丁文的译音,原意是“太阳”)。地球上的氦是1895年从铀酸盐的矿物和其他铀处矿中被发现的。后来,人们在大气里、水里,以至陨石和宇宙射线里也发现了氦。

1898年拉姆塞又在液态空气蒸发后的残余物里,先后发现了氪(拉丁文原意是“隐藏的”)、氖(拉丁文原意是“新的”)和氙(拉丁文原意是“生疏的”)。

1900年德国物理学教授道恩(F.E.Dorn,1848一?)在含镭的矿物中发现一种具有放射性的气体,称为氡(拉丁文原意是“射气”)。

1678年R.胡克提出气体压强是大量气体分子与器壁碰撞的结果。1738年D.伯努利据此导出了压强公式,解释了玻意耳定律。1744年M.罗蒙诺索夫提出热是分子运动的表现,这是气体动理论的萌芽时期。   19世纪中叶气体动理论有了重大发展,它的奠基者是R.克劳修斯、J.麦克斯韦、L.玻耳兹曼。1858年克劳修斯提出气体分子平均自由程的概念并导出相关公式。1860年麦克斯韦指出,气体分子的频繁碰撞并未使它们的速度趋于一致,而是达到稳定的分布,导出了平衡态气体分子的速率分布和速度分布。后来,他又建立了输运过程的数学理论。1868年玻耳兹曼在麦克斯韦分布中引进重力场。70年代玻耳兹曼引入非平衡态的分布函数,用它定义一个H函数,证明在平衡态H达到最小(H定理),进而揭示了熵的统计意义。他还完成了输运过程的数学理论 。此后,H.洛伦兹把输运过程的数学理论用到金属中的电子,得到重要结果。




古生物学详细资料大全
随着近代生产发展的需要和科学研究的深化,古植物学分出了古孢粉学和古藻类学;古动物学分出了古无脊椎动物学和古脊椎动物学;古人类学既是人类学的分支学科,又是古脊椎动物学的分支学科;根据个体微小的动植物化石或大生物体微小部分的研究,又形成了微体古生物的分支学科,在理论和实践上显示出重要的意义。 发展简史...

理论力学是什么?
理论力学建立科学抽象的力学模型(如质点、刚体等)。静力学和动力学都联系运动的物理原因——力,合称为动理学。有些文献把kinetics和dynamics看成同义词而混用,两者都可译为动力学,或把其中之一译为运动力学。此外,把运动学和动力学合并起来,将理论力学分成静力学和动力学两部分。理论力学依据一些...

地球电磁感应研究简史
地球电磁感应研究的简史始于1883年,兰姆(H.Lamb)对周期性外源场在均匀导体球中的电磁感应进行了研究,这是地球电磁感应理论最早期的工作。同年,舒斯特(A.Schuster)利用兰姆的结果,探讨了电磁日变化的内、外源场关系。1919年,S.查普曼将这些结果应用于实际地球模型和地磁静日变化的分析,首次获得了...

牛顿运动定律的发展简史
但他第一次提出了力与运动间存在关系,为力学发展做出了一定贡献。 6世纪, 希腊学者菲洛彭诺斯(J.Philoponus)对亚里士多德的运动学说持批判态度。他认为抛体本身具有某种动力,推动物体前进,直到耗尽才趋于停止,这种看法后来发展为14世纪的“冲力理论”。 14世纪,法国哲学家布里丹(Jean Buridan,1295...

空气动力学发展简史
瑞士数学家欧拉在人类对飞行物体受力研究的早期贡献中,对空气动力学进行了探究。17世纪末,荷兰物理学家惠更斯首次估算物体在空气中的阻力,牛顿随后在1726年通过力学原理,提出了物体受力与其速度平方、特征面积及空气密度的关系,标志着空气动力学经典理论的开端。1755年,欧拉进一步发展,提出了描述无粘性...

内弹道内弹道学发展简史
内弹道学的发展历史可以追溯至19世纪20年代至30年代,这一时期成为其理论基础的奠基阶段。意大利数学家拉格朗日在1793年做出了重要贡献,他假设膛内气流的速度沿着轴线呈线性分布,从而揭示了膛底压力与弹底压力之间的初步联系。这一理论为后续研究奠定了基础。早在1664年,雷萨尔利用热力学第一定律,构建了...

现代中医基础理论现代经络发展简史
法国的红外热像研究也有所贡献。早在1950年代,长滨善夫在日本首次报道了循经感传现象,随后Nogierop对中国耳针穴位的研究,以及中谷一雄等关于“良导络”的发现,都为经络理论的发展奠定了基础。1952年,藤田六郎的假说,以及1955年的“良导点”和“良导络”研究,进一步丰富了经络理论的内涵。

流体力学详细资料大全
发展简史,学科内容,研究方法,现场观测,实验室模拟,理论分析,数值计算,展望, 发展简史 出现 流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。中国有大禹治水疏通江河的传说。秦朝李冰父子(公元前3世纪)领导劳动人民修建了都江堰,至今还在发挥作用。大约与此同时,罗马人建成了大规模的供水管道系统。 对流...

动物简史
但是我们看到海绵就是一动不动在那里。所以我们需要做实验,以及观察。 通过观察我们发现。海绵长得各...都会有芽体。内部都有消化腔。都是多层细胞结构。虽然它们有这么多相同点,但是水螅毕竟是有海绵动物

什么叫三维世界?
什么是三维世界?其实三维世界就是人们所感受到的,认知到的,思想到的物质世界,比一维,二维世界多了出一个“思想”。因为人有思想,所以就比前二维的生命更提升了一个台阶。最起码人是有思想能力的,能靠自己的思想去做事。去指导自己这个载体做很多一维、二维生命做不到的事情。三维世界比二维世界的...

乌兰察布盟18518123199: 气体分子动理论是如何被推出来的? -
吕甄抑肽: 气体分子动理论的第一项重要工作是克劳修斯完成的,他推出了气体的压强公式.后来麦克斯韦推出了气体分子的速度分布律和速率分布律.玻尔兹曼进一步建立了考虑重力场作用时的气体分子运动理论.

乌兰察布盟18518123199: 气体动理论所谓的标准状态是指? -
吕甄抑肽: 气体动理论(气体分子运动论)是早期的统计理论.它揭示了气体的压强、温度、内能等宏观量的微观本质,并给出了它们与相应的微观量平均值之间的关系.平均自由程公式的推导,气体分子速率或速度分布律的建立,能量均分定理的给出,以及有关数据的得出,使人们对平衡态下理想气体分子的热运动、碰撞、能量分配等等有了清晰的物理图像和定量的了解,同时也显示了概率、统计分布等对统计理论的特殊重要性. 文章来源: http://www.sywb.net原文链接: http://www.sywb.net/html/154576868.html

乌兰察布盟18518123199: 气体动理论算力学或者热学吗 -
吕甄抑肽: 气体动理论属于热学! 气体动理论(气体分子运动论)是早期的统计理论.它揭示了气体的压强、温度、内能等宏观量的微观本质,并给出了它们与相应的微观量平均值之间的关系.平均自由程公式的推导,气体分子速率或速度分布律的建立,能量均分定理的给出,以及有关数据的得出,使人们对平衡态下理想气体分子的热运动、碰撞、能量分配等等有了清晰的物理图像和定量的了解,同时也显示了概率、统计分布等对统计理论的特殊重要性.

乌兰察布盟18518123199: 大学物理气体动理论 -
吕甄抑肽: 这个问题很简单:因为两种气体 的体积和压强都相同,由 PV=nRT--->两种气体 的摩尔数和温度的乘积——相同,而气体的内能 E=i nRT/2=iPV/2 ---所以,自由度大的气体内能多,自由度小的气体内能少---所以,氢气的内能>氦气的内能!

乌兰察布盟18518123199: 大学物理 气体动理论 -
吕甄抑肽: 你之所以有这个疑问,是因为你把速度等同速率了,分子速度在X方向的分量的平均值就是x方向平均速度,如果不为零,那说明分子集体会向左运动,或者向右运动,显然不可能

乌兰察布盟18518123199: 大学物理的目录 -
吕甄抑肽: 第1章 质点运动学1 1.1 位置矢量和位移1 1.1.1 参照系与坐标系1 1.1.2 位置矢量(运动方程) 2 1.1.3 位移矢量3 1.2 速度和加速度4 1.2.1 速度4 1.2.2 加速度5 1.3 运动的相对性7 1.3.1 直线运动7 1.3.2 相对运动8 1.4 平面曲线运动9 1.4.1 抛体运动 ...

乌兰察布盟18518123199: 气体分子运动学20世纪建立了什么理论 -
吕甄抑肽: (1)物质是由大量分子构成的 (2)分子永不停息地做无规则的运动 (3)分子之间存在着相互作用的引力和斥力. 气体分子动理论 人们从分子运动的微观模型出发,给出某些简化的假定,结合概率和统计力学的知识

乌兰察布盟18518123199: 化学应用问题,高手请进 -
吕甄抑肽: 楼上的..........别误导人啊,阿伏伽德罗定律和理想气体方程能是一回事儿不...........理想气体方程起码说明了5条定律:1、Boyle-Marriote定律;2、Charles-Gay-Lussac定律;3、Dalton分压定律;4、Amagat分体积定律;5、最后才是阿伏伽德罗定...

乌兰察布盟18518123199: 热力学气体动理论 -
吕甄抑肽: 约为1.26 通过分析绝热方程和单原子理想气体的绝热指数就可以求出来 如果要具体过程+Q

乌兰察布盟18518123199: 什么叫做分子运动论的基本论点 -
吕甄抑肽: 分子运动论(又称气体动理论或分子动理论)是描述气体为大量做永不停息的随机运动的粒子(原子或分子,物理学上一般不加区分,都称作分子).快速运动的分子不断地碰撞其他分子或容器的壁.分子动理论就是通过分子组分和运动来解释气体的宏观性质,如压强、温度、体积等.分子动理论认为,压强不是如牛顿猜想的那样,来自分子之间的静态排斥,而是来自以不同速度做热运动的分子之间的碰撞. 分子太小而不能直接看到.显微镜下花粉颗粒或尘埃粒子做的无规则运动——布朗运动,便是分子碰撞的直接结果.这可以作为分子存在的证据.

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网