tanx- x的泰勒级数展开式是什么?

作者&投稿:逄肯 (若有异议请与网页底部的电邮联系)
~

tanx 的泰勒展开式是 x + 1/3*x^3 + 2/15*x^5 + ....,

所以 tanx - x ~ 1/3*x^3 。

拓展资料

tanx泰勒展开式推导过程是什么样的?

1、tanx泰勒展开式推导过程是:tanx=x+x^3/3+2x^5/15+17x^7/315+62x^9/2835+...+[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1)]/(2n)!+......(|x|<π/2)【注:B(2n-1)是贝努利数】

2、定义:数学中, 泰勒公式是一个用 函数在某点的信息描述其附近取值的公式。如果函数足够 平滑的话,在已知函数在某一点的各阶 导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

3、命名于:泰勒公式得名于英国数学家布鲁克· 泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。

4、泰勒中值定理:

(1)泰勒公式是将一个在x=x 0处具有n阶导数的函数f(x)利用关于(x-x 0)的n次多项式来逼近函数的方法。

(2)若函数f(x)在包含x 0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:


其中,

表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x 0处的泰勒展开式,剩余的R n(x)是泰勒公式的余项,是(x-x 0) n的高阶无穷小。、

泰勒简介

18世纪早期 英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685 年8月18日在英格兰德尔塞克斯郡的 埃德蒙顿市出生。1701年,泰勒进 剑桥大学的圣约翰学院学习。1709年后移居 伦敦,获得法学学士学位。

1712年当选为 英国皇家学会会员,同年进入促裁牛顿和莱布尼兹发明微积分优先权争论的委员会。并于两年后获法学博士学位。从1714年起担任皇家学会第一秘书,1718年以健康为由辞去这一职务。1717年,他以泰勒定理求解了数值方程。最后在1731年1 2月29日于 伦敦逝世。

泰勒以微积分学中将 函数展开成无穷 级数的定理著称于世。这条定理大致可以叙述为:函数在一个点的邻域内的值可以用函数在该点的值及各阶导数值组成的无穷级数表示出来。

然而,在半个世纪里,数学家们并没有认识到泰勒定理的重大价值。这一重大价值是后来由 拉格朗日发现的,他把这一定理刻画为微积分的基本定理。泰勒定理的严格证明是在定理诞生一个世纪之后,由柯西给出的。

泰勒定理开创了有限差分理论,使任何单变量函数都可展成 幂级数;同时亦使 泰勒成了有限差分理论的奠基者。

泰勒于书中还讨论了 微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。此外,此书还包括了他于数学上之其他创造性工作,如论述常 微分方程的奇异解,曲率问题之研究等。 

泰勒公式发展过程

希腊哲学家芝诺在考虑利用无穷级数求和来得到有限结果的问题时,得出不可能的结论-芝诺悖论,这些悖论中最著名的两个是“阿喀琉斯追乌龟”和“飞矢不动”。

后来,亚里士多德对芝诺悖论在哲学上进行了反驳,直到德谟克利特以及后来的阿基米德进行研究,此部分数学内容才得到解决。阿基米德应用穷举法使得一个无穷级数能够被逐步的细分,得到了有限的结果。

14世纪,玛达瓦发现了一些特殊函数,包括正弦、余弦、正切、反正切等三角函数的泰勒级数。

17世纪,詹姆斯·格雷果里同样继续着这方面的研究,并且发表了若干麦克劳林级数。直到1712年,英国牛顿学派最优秀代表人物之一的数学家泰勒提出了一个通用的方法,这就是为人们所熟知的泰勒级数;爱丁堡大学的科林·麦克劳林教授发现了泰勒级数的特例,称为麦克劳林级数。 




昭平县13915692976: x→0时,tanx - x~? -
酉贤华法: tanx 的泰勒展开式是 x + 1/3*x^3 + 2/15*x^5 + ....,所以 tanx - x ~ 1/3*x^3 . 拓展资料 tanx泰勒展开式推导过程是什么样的? 1、tanx泰勒展开式推导过程是:tanx=x+x^3/3+2x^5/15+17x^7/315+62x^9/2835+...+[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1...

昭平县13915692976: tanx的泰勒展开式中的贝努利数怎么求啊 -
酉贤华法: 因为tanx是奇函数,即tan(-x)=-tanx 所以tan(-x)=A0+A1(-x)+A2(-x)²+A3(-x)³+o((-x)³) =A0-A1x+A2x²-A3x³+o(-x³) =-tanx =-(A0+A1x+A2x²+A3x³+o(x³)) =-A0-A1x-A2x²-A3x.

昭平县13915692976: 高等数学,tanx的泰勒展开是什么?和sinx相同吗 -
酉贤华法: 是tanx = x+ (1/3)x^3 +.... 不同,sinx是:sinx = x-(1/6)x^3+..... 常用泰勒展开式 e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+…… ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k + ……(|x|<1) sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+…….(-∞ ...

昭平县13915692976: 三角函数泰勒展开公式 -
酉贤华法: 泰勒展开式又叫幂级数展开法 f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...+f(n)(a)/n!*(x-a)n+…… 实用幂级数: e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+…… ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……. (-∞<x<∞) cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)

昭平县13915692976: tanx麦克劳林公式展开
酉贤华法: tanx麦克劳林公式展开是tanx=x+x^3/3+2x^5/15+17x^7/315+...+[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1)]/(2n)!(|x| 全部

昭平县13915692976: tanx泰勒展开式常用公式
酉贤华法: tanx泰勒展开式常用公式是“tanx=x+x^3/3+2x^5/15+17x^7/315+62x^9/2835+...+[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1)]/(2n)!”,其中|x|泰勒公式一般应用于数学、物理领域,是一个用函数在某点的信息描述其附近取值的公式,如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值.

昭平县13915692976: tanx泰勒展开式怎么推
酉贤华法: 1、tanx泰勒展开式推导过程是:tanx=x+x^3/3+2x^5/15+17x^7/315+62x^9/2835+...+[2^(2n)*(2^(2n)-1)*B(2n-1)*x^(2n-1)]/(2n)!+......(|x|2、定义:数学中, 泰勒公式是一个用 ...

昭平县13915692976: tanx的麦克劳林公式
酉贤华法: 设f(x)=tanx,麦克劳林公式为:f(x)=f(0)f'(0)x f''(0)/2!·x^2, f'''(0)/3!·x^3 o(x^n)=0 x 0 2/3!·x^3 o(x^n)= x x^3 /3 o(x^n).麦克劳林级数(Maclaurin's series)是泰勒级数(Taylor's series)的特殊情况,即当a=0时,f(x)的展开式.这类公式不需要特意去背诵,它很长,也很容易记混.最好的办法就是自己尝试推导.

昭平县13915692976: 正切函数的泰勒级数展开是不是展开的各项没有一个同项公式,所以只能逐项写出来 -
酉贤华法: 您好,步骤如图所示: 通项公式是有的,但不能用初等函数表示出来 B(n)是Bernoulli(伯努利数) 很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报 .若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢. ☆⌒_⌒☆ 如果问题解决后,请点击下面的“选为满意答案”

昭平县13915692976: 【急】将函数的幂级数展开为泰勒级数的泰勒公式是什么?如果可以,请举例说明!谢谢! -
酉贤华法: f(x)=f(x0)+f'(x0)(x-x0)+[f''(x0)/2!]/(x-x0)∧2+.....+[fn(x0)/n!](x-x0)∧n+...的右边为 f在x=0处得泰勒展开式 在实际应用上,主要讨论x0=0处的展开式 例如求f(x)=e ∧x 的展开式 解:由于fn(x)=e∧x,fn(0)=1,(n=1,2,3....) 所以f的拉格朗日余项为Rn(x)=[e∧(θx)...

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网