基因连锁互换定律

作者&投稿:揣殷 (若有异议请与网页底部的电邮联系)
基因连锁互换定律的比较~

比较项目 自由组合规律 连锁互换规律   是否完全连锁 完全连锁 不完全连锁  研究对象 不同对染色体上非等位基因之间的遗传关系 同源染色体上非等位基因间的遗传关系   遗传实质 非等位基因之间的分离或重组互不干扰 同一条染色体上的连锁基因相伴传递 交换区段上等位基因互换形成新的连锁关系 F1的配子及比例 22或2 n 数量相等 21∶1 22或2 n屮 亲本组合型多,新组合型少 F2的表现型及比例 (3∶1)2或(3∶1)n / 亲本组合型多,新组合型少,不符合(3∶1)n规律 F1(测交子代)表现型比例 (1∶1)2或(1∶1)n 1∶1 亲本组合型多,新组合型少,不符合(1∶1)n规律

基因的连锁和交换定律的实质:
基因连锁和互换规律的实质:
位于同一染色体上的不同基因,在减数分裂过程形成配子时,常常连在一起进入配子;在减数分裂的四分体时期,由于同源染色体上的等位基因随着非姐妹染色单体的交换而发生互换,因而产生基因的重组。
三个规律的联系:
基因的自由组合规律和基因的连锁互换规律是建立在基因的分离规律的基础上的,生物形成配子时,在减数第一次分裂的过程中,同源染色体上的等位基因都要彼此分离。在分离之前,可能发生部分染色体的交叉互换。在同源染色体分离的基础上,非同源染色体上的非等位基因又进行自由组合,从而形成各种组合的配子。可见三大规律在配子形成过程中相互联系、同时进行、同时作用。

连锁互换是生物遗传的基本规律之一。即决定不同性状的两对(或两对以上)等位基因位于同一对同源染色体上,在遗传时,位于同一个染色体上的基因常常连在一起不分离,一起随着配子传递下去。这就是连锁遗传。如雄果蝇的遗传是完全连锁遗传。与雄果蝇不同,雌果蝇的同性状的基因,大多是连锁遗传,但在减数分裂的过程中,来自父方的一个染色单体和来自母方的一个染色单体在联会四分体时发生交叉,相互交换对应的部分,这就是互换。由于互换,使染色体上的基因产生新的组合,于是可以产生含有新的基因组合的配子。因此,雌果蝇的遗传,是不完全的连锁遗传,见下图统称为基因的连锁和互换规律。
基因连锁互换计算(求交换值):交换值=测交后代中的重组型数/测交后代总数 *100%

基因的连锁和交换定律
开放分类: 生物、基因工程、遗传学

孟德尔遗传的两个基本定律在得到科学界的公认以后,受到了广泛的重视,许多生物学家开始用其他的动物和植物作材料,进行杂交试验。但是,他们在进行两对相对性状的杂交试验时发现,并不是所有的结果都符合基因的自由组合定律,于是,有人一度对孟德尔提出的遗传定律产生了怀疑。这时,美国的遗传学家摩尔根(如图)和他的同事们用果蝇作试验材料,进行了大量的遗传学的研究工作,不仅证实了基因的分离定律和自由组合定律是正确的,而且揭示出了遗传的第三个基本定律——基因的连锁和交换定律,科学地解释了孟德尔的遗传定律所不能解释的遗传现象。
尔根等人用纯种灰身长翅果蝇与纯种黑身残翅果蝇交配,他们看到子一代(F1)都是灰身长翅的,由此可以推出,果蝇的灰身(B)对黑身(b)是显性;长翅(V)对残翅(v)是显性。所以,纯种灰身长翅果蝇的基因型与纯种黑身残翅果蝇的基因型应该分别是(BBVV)和(bbvv)。F1的基因型应该是(BbVv)(如图)。
摩尔根又让F1的雄果蝇(BbVv)与双隐性类型的雌果蝇(bbvv)测交,按照自由组合定律,测交后代中应该出现4种不同的类型,即灰身长翅、灰身残翅、黑身长翅、黑身残翅,并且它们之间的数量比应该为1:1:1:1。但是,测交的结果与原来预测的完全不同,只出现两种和亲本完全相同的类型:灰身长翅(BbVv)和黑身残翅(bbvv),并且两者的数量各占50%。很明显,这个测交的结果是无法用基因的自由组合定律来解释的。
为什么会出现上述试验结果呢?摩尔根认为果蝇的灰身基因和长翅基因位于同条染色体上,可以用来表示(如图);黑身基因和残翅基因也位于同一条染色体上,可以用来表示。所以,当两种纯种的亲代果蝇交配后,F1的基因型BbVv,应该表示为,表现型是灰身长翅。这样,在F1雄果蝇产生配子时,原来位于同一条染色体上的两个基因(B和V、b和v)就不能分离,而是连在一起向后代传递。因此,当F1雄果蝇与黑身残翅的雌果蝇交配后,只能产生灰身长翅()和黑身残翅()两种类型,并且这两者的数量各占 50%。像这样,位于一对同源染色体上的两对(或两对以上)等位基因,在向下一代传递时,同一条染色体上的不同基因连在一起不相分离的现象,叫做连锁。在上述雄果蝇的测交试验中,由于只有基因的连锁,没有基因之间的交换,因此,这种连锁是完全连锁。在完全连锁遗传中,后代只表现出亲本类型。
不完全连锁遗传
摩尔根等人还做了另一组试验,他们让子一代(F1)的雌果蝇(BbVv)与双隐性类型的雄果蝇(bbvv)测交,所得的结果如图所示。从图中所示的结果可以看出,F1与双隐性类型测交,虽然测交后代的表现型与基因自由组合定律中测交的结果一样,也是4种类型;灰身长翅,灰身残翅、黑身长翅和黑身残翅,但是,它们之间的数量比并不符合基因的自由组合定律中的1:1:1:1,而是与亲本表现型相同类型的比例很大(占总数的84%);与亲本表现型不同类型的比例很小(占总数的16%)。
为什么会出现上述的试验结果呢?摩尔根认为,位于同一条染色体上的两个基因的连锁关系有时是可以改变的(如图)。在细胞进行减数分裂形成配子的过程中(即出现四分体时),如果同源染色体中,来自父方的染色单体与来自母方的染色单体相互交换了对应部分,在交换区段上的等位基因就会发生交换,这种交换可以产生新的基因组合。所以测交后,在子代产生了与亲代表现型相同类型的同时,也产生了与亲代表现型不同的新类型。但是,为什么测交后代的数量比不是1:1:1:1呢?这是因为F1在形成配子时,大部分配子中的同一条染色体上的这两个基因是连锁的,因而生成的配子和配子特别多(各占42%),只有一小部分配子中的两个基因因为交换(交叉点正好位于基因B与V、 b与v的中间)而产生了新的组合,因而生成的配子和配子很少(各占8%)。因此,F1与双隐性类型测交,就产生了这样的结果:灰身长翅占42%,黑身残翅占42%,灰身残翅占8%,黑身长翅占8%。在上述雌果蝇的测交试验中,由于基因在向下一代传递的过程中,不仅有连锁,还出现了交换,因此,这种遗传是不完全连锁遗传。
基因连锁和交换定律的实质
综上所述,基因的连锁和交换定律的实质是:在进行减数分裂形成配子时,位于同一条染色体上的不同基因,常常连在一起进入配子;在减数分裂形成四分体时,位于同源染色体上的等位基因有时会随着非姐妹染色单体的交换而发生交换,因而产生了基因的重组。应当说明的是,基因的连锁和交换定律与基因的自由组合定律并不矛盾,它们是在不同情况下发生的遗传规律:位于非同源染色体上的两对(或多对)基因,是按照自由组合定律向后代传递的,而位于同源染色体上的两对(或多对)基因,则是按照连锁和交换定律向后代传递的。
基因的连锁和交换定律在实践中的应用
基因的连锁和交换定律,在动植物育种工作和医学实践中都具有重要的应用价值。
在育种工作中,人们根据育种目标选配杂交亲本时,必须考虑基因之间的连锁关系。如果几个有利性状的基因连锁在一起,这对育种工作就很有利。例如,大麦抗秆锈病与抗散黑穗病的基因就是紧密连锁的,在育种中只要注意选择大麦抗秆锈病的植株,也就等于同时选择了抗散黑穗病的植株,达到一举两得、提高选择效率的目的。但是如果不利性状与有利性状的基因连锁在一起,就要采取措施打破基因连锁,促成基因交换,让人们所需要的基因重组在一起,从而培育出优良品种来。例如,有两个大麦品种:一个是矮秆抗倒伏但不抗锈病的品种,另一个是高秆易倒伏但抗锈病的品种。每一个品种中控制这两个性状的基因都位于同一条染色体上。经过杂交,F2会出现四种类型的后代,其中由于基因交换而出现的矮秆抗倒伏同时又抗锈病的类型就是符合需要的类型,经过进一步培育和大量繁殖就可以成为良种,其他不符合需要的类型应该淘汰。由此可见,通过基因交换产生的新类型能够为育种工作提供原始材料。
在医学实践中,人们可以利用基因的连锁和交换定律,来推测某种遗传病在胎儿中发生的可能性。例如,有一种叫做指甲髌骨综合症的人类遗传病。患者的主要症状是指甲发育不良,髌骨缺少或发育不良。这种病是一种显性遗传病,致病基因(用两个大写字母NP表示)与ABO血型的基因(IA、IB或i)位于同一条染色体上。在患这类疾病的家庭中,NP基因与IA基因往往连锁,而NP的正常等位基因np与IB基因或i基因连锁,又已知NP和IA之间的重组率为10%。由此可以推测出,患者的后代只要是A型或AB型血型(含IA基因),一般将患指甲髌骨综合症,不患这种病的可能性只有10%。因此,这种病的患者在妊娠时,应及时检验胎儿的血型,如果发现胎儿的血型是A型或AB型,最好采用流产措施,以避免生出指甲髌骨综合症患儿。

http://baike.baidu.com/view/1371287.htm

雄果蝇为完全连锁 它在产生配子的时候是不发生互换的
雌果蝇为不完全连锁 在产生配子的过程中有一部分因染色体交叉而发生互换


连锁交换定律与自由组合定律的比较
从遗传实质来看,自由组合定律描述的是非等位基因的分离或重组,这些基因之间互不干扰,独立遗传。相比之下,连锁互换定律涉及的是同一条染色体上的连锁基因,它们在交换区段上可能进行等位基因的互换,从而形成新的连锁关系。在F1代的配子形成上,自由组合定律下的配子数量相等,通常是2或2。而连锁互换定律...

连锁互换定律内容
连锁互换定律是美国遗传学家摩尔根首先明确提出来的。该定律揭示了同源染色体上不同对基因的遗传。它告诉人们,位于同一条染色体的基因常常有连在一起遗传的倾向,但是在减数分裂中,同源染色体之间可以以一定频率互换等位部分的基因,从而改变基因的连锁关系。

简介基因的连锁和交换定律
位于同一条染色体上的基因称为连锁基因,连锁有紧密连锁和不紧密连锁之分,紧密连锁的基因不易发生交换。交换是指同源染色体间的等位基因位置发生的互换.交换使原来在同一染色体上的基因不再伴同遗传.

基因连锁与交换定律的特点是什么
相互交换对应的部分,这就是互换。由于互换,使染色体上的基因产生新的组合,于是可以产生含有新的基因组合的配子。因此,雌果蝇的遗传,是不完全的连锁遗传,见下图统称为基因的连锁和互换规律。基因连锁互换计算(求交换值):交换值=测交后代中的重组型数\/测交后代总数 *100 ...

基因连锁互换定律的比较
比较项目 自由组合规律 连锁互换规律 是否完全连锁 完全连锁 不完全连锁研究对象 不同对染色体上非等位基因之间的遗传关系 同源染色体上非等位基因间的遗传关系 遗传实质 非等位基因之间的分离或重组互不干扰 同一条染色体上的连锁基因相伴传递 交换区段上等位基因互换形成新的连锁关系 F1...

遗传学上的两大遗传定律有什么定律和什么定律
于是继孟德尔的两条遗传规律之后,连锁互换定律成为遗传学中的第三个基本定律。所谓连锁互换定律,就是原来为同一亲本所具有的两个性状,在F2中常常有连系在一起遗传的倾向,这种现象称为连锁遗传。连锁遗传定律的发现,证实了染色体是控制性状遗传基因的载体。通过交换的测定进一步证明了基因在染色体上具有...

有关基因交换的问题
基因互换是指控制不同性状的非等位基因位于一对同源染色体的不同位置上,子一代杂合体在产生配子时,同步化进入减数分裂的全部性母细胞中,一小部分初级性母细胞的四分体时期,可能发生同源染色体的非姐妹染色单体间对应节段的交换,一旦互换发生在连锁基因之间,使位于对应节段上的等位基因互换,以形成新...

连锁交换定律的特点是什么?为什么组合类型总低于50
自由组合定律适用于两对相对性状.如AaBb,位于两对同源染色体上的等位基因(Aa和Bb)在形成配子时A和a分开,同时B和b也分开,然后它们再自由组合即随机组合,可能形成AB.Ab.aB.ab四中配子.连锁互换规律适用于染色体交叉互换时.在形成配子时,有染色体交叉互换的现象,交叉互换后同一条染色体上的基因会分开....

基因遗传定律的详细内容
非等位基因自由组合。这就是说,一对染色体上的等位基因与另一对染色体上的等位基因的分离或组合是彼此间互不干扰的,各自独立地分配到配子中去。适用范围:不连锁基因。对于除此以外的完全连锁、部分连锁以及所谓假连锁基因,遵循连锁互换规律。连锁互换定律:连锁互换定律是在1900年孟德尔遗传规律被重新发现...

遗传学的基本规律是什么
2、自由组合定律:非等位基因自由组合。这就是说,一对染色体上的等位基因与另一对染色体上的等位基因的分离或组合是彼此间互不干扰的,各自独立地分配到配子中去。3、连锁互换定律:生殖细胞形成过程中,位于同一染色体上的基因是连锁在一起,作为一个单位进行传递,称为连锁律。在生殖细胞形成时,一对...

江陵县18217167612: 基因的连锁和交换定律 - 搜狗百科
博唐永瑞:[答案] 基因的连锁和交换定律的实质是:在进行减数分裂形成配子时,位于同一条染色体上的不同基因,常常连在一起进入配子;在减数分裂形成四分体时,位于同源染色体上的等位基因有时会随着非姐妹染色单体的交换而发生交换,因而...

江陵县18217167612: 基因的连锁互换定律是何? -
博唐永瑞:[答案] 自由组合律主要针对非同源染色体上的非等位基因的遗传规律.但许多基因位于同一染色体上,这一现象称为基因连锁.1909年美国遗传家摩尔根及其学生在孟德尔定律基础上,利用果蝇进行的杂交实验,揭示了位于同源染色体上不...

江陵县18217167612: 基因的连锁互换定律?是什么内容? -
博唐永瑞: 自由组合律主要针对非同源染色体上的非等位基因的遗传规律.但许多基因位于同一染色体上,这一现象称为基因连锁. 1909年美国遗传家摩尔根及其学生在孟德尔定律基础上,利用果蝇进行的杂交实验,揭示了位于同源染色体上不同座位的...

江陵县18217167612: 什么是基因连锁与互换定律?原理是什么? -
博唐永瑞:[答案] 雄果蝇为完全连锁 它在产生配子的时候是不发生互换的 雌果蝇为不完全连锁 在产生配子的过程中有一部分因染色体交叉而发生互换

江陵县18217167612: 基因连锁与交换定律的特点是什么 -
博唐永瑞:[答案] 连锁互换是生物遗传的基本规律之一.即决定不同性状的两对(或两对以上)等位基因位于同一对同源染色体上,在遗传时,位于同一个染色体上的基因常常连在一起不分离,一起随着配子传递下去.这就是连锁遗传.如雄果蝇的遗传是完全连锁遗传....

江陵县18217167612: 基因的连锁和交换定律是什么东西? -
博唐永瑞: 基因的连锁和交换定律的实质是:在进行减数分裂形成配子时,位于同一条染色体上的不同基因,常常连在一起进入配子;在减数分裂形成四分体时,位于同源染色体上的等位基因有时会随着非姐妹染色单体的交换而发生交换,因而产生了基因的重组.应当说明的是,基因的连锁和交换定律与基因的自由组合定律并不矛盾,它们是在不同情况下发生的遗传规律:位于非同源染色体上的两对(或多对)基因,是按照自由组合定律向后代传递的,而位于同源染色体上的两对(或多对)基因,则是按照连锁和交换定律向后代传递的.

江陵县18217167612: 连锁互换定律内容
博唐永瑞:连锁互换定律是美国遗传学家摩尔根首先明确提出来的.该定律揭示了同源染色体上不同对基因的遗传.它告诉人们,位于同一条染色体的基因常常有连在一起遗传的倾向,但是在减数分裂中,同源染色体之间可以以一定频率互换等位部分的基因,从而改变基因的连锁关系.

江陵县18217167612: 遗传学第三定律内容是什么?就是那个连锁互换定律. -
博唐永瑞: 其基本内容是:生殖细胞形成过程中,位于同一染色体上的基因是连锁在一起,作为一个单位进行传递,称为连锁律.在生殖细胞形成时,一对同源染色体上的不同对等位基因之间可以发生交换,称为交换律或互换律.

江陵县18217167612: 什么是连锁与互换定律 -
博唐永瑞: 连锁与互换定律也被成为摩尔根定律 内容是位于同一染色体上的基因具有连锁性,即不是自由组合和分离.在减数分裂时同源染色体会发生交换,造成子代个体具有一定的分离比.

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网