激光具有哪些特点

作者&投稿:道璧 (若有异议请与网页底部的电邮联系)
激光有哪些特性?~

激光的特点与应用

激光也是光,它与普通光没有本质上的区别。但激光又是一种特殊的光,与普通光相比具有方向性好、单色性好、高亮度和优异的相干性四个特点。激光的各种应用正是基于上述特点,在这些方面目前还找不到第二种光源可与激光媲美。
(一)指点江山千里外——方向性好
方向性即光束的指向性,常以a角大小来评价,a角越越小光束发散越小,方向性越好。若a角趋于零,就可近似地把它称作“平行光”。灯光、阳光等普通光是射向四面八方的,根本谈不上方向性。虽然人们可以置光源于透镜或凹面反射镜的焦点上,获得近似“平行光”,但因光源总有一定大小,镜面不可能做到绝对准确,加之镜子孔径衍射引起的发散,就是普通光中方向性最好的探照灯的光束也总有0.01弧度的发散角(1弧度=103毫弧度=57.296度),这是普通光目前利用光学系统后方向性达到的最高水平。
由于谐振腔对光振荡方向的限制,激光只有沿腔轴方向受激辐射才能振荡放大,所以激光射束具有很高的方向性。当然,由于谐振腔反射镜对光存在衍射极限,如不采取一定措施,想使发散角为零是相当困难的。尽管如此,激光的发散角一般在毫弧度数量级,比探照灯光的发散角小10倍以上,比微波小约100倍。激光束借助光学发射系统,a角可小到几乎是零,接近于平行光束。
(二)红橙黄绿青蓝紫——单色性好
从电磁波谱中,我们可以看到,对应一种颜色就有一种波长。“雨后复斜阳,彩虹架长空”,这是我们常见的自然现象,因为太阳光包含着所有可见光的波长,也就是包含着世界上所有的各种颜色,结果却成了白色。所以,“白”光是红、橙、黄、绿、青、蓝、紫各种颜色光的混合。一种光所包含的波长范围越小,它的颜色就越纯,看起来就越鲜艳,通常我们把这种现象称之为单色性高。一般把波长范围小于几埃(1埃=1亿分之一厘米)的一段辐射称为单色光,发射单色光的光源称为单色光源。和激光束的发散角是衡量光束方向性好坏的标志一样,谱线宽度则是衡量单色性优劣的标准。
人们在长期生产和科学实验中,已经创造出很多单色光源,如各种霓虹灯、水银灯、钠光灯等。以往最好的单色光源是同位素氪灯86,它在低温下发出的光波长范围只有约0.005埃,室温下的谱线宽度为0.0095埃,因此它的颜色很鲜艳。激光的出现,在光的单色性上引起了一次大的飞跃。如单色性好的氦氖激光,它的波长范围比千万分之一埃还要小,最小的已经达到一千亿分之几埃,它的单色性比普通光真不知要好多少亿倍。因此,激光是颜色最纯、色彩最鲜的光。
(三)100亿倍于太阳光——亮度高
简单讲亮度,是指光源在单位面积上的发光强度。它是评价光源明亮程度的重要指标。
为了生产实践的需要,光学上规定:光源在单位面积上,向某一方向的单位立体角内发射的光功率称为光源在这个方向上的亮度。在一般照明工程中,亮度单位是“熙提”。简单地讲,1熙提就是在1厘米2的单位面积上发光强度为1烛光。几种光源的亮度见表。
大家知道,电灯要比蜡烛亮得多,炭弧灯又比电灯更亮,而超高压水银灯比炭弧灯又要亮出十几倍。那么,世界上最亮的光源是什么呢?人造小太阳(长弧氙灯)的出现,它的亮度已经赶上了太阳。而高压脉冲氙灯更比太阳亮上10倍。但在激光面前,无论是太阳、人造小太阳,还是高压脉冲氙灯,他们的亮度都算不了什么。一支功率仅为1毫瓦的氦氖激光器的亮度,比太阳约高100倍;一台巨型脉冲的固体激光器的亮度可以比太阳表面亮度高1010倍,即100亿倍。这年光源亮度上是一次何等惊人的大飞跃啊!我们可以毫不夸张地说,激光是现代最亮的光源,它的亮度是过去的一切都望尘莫及。迄今为止,唯有氢弹爆炸瞬间的强烈闪光,才能与它相比拟。在这里我们应该值得注意的是,绝不能把激光的亮度误解为激光器所能给出的光能量,比相同时间内太阳光给出的还多。实际上这是由于激光把脉冲宽度压的很窄、光束的发散角又很小的缘故。
(四)黑白相间条纹清——相干性好
激光是一种相干光,这是激光这一崭新光源与普通光源最重要的区别。那么,什么是光的相干性呢?我们不妨用水波来进行解释:当你同时向平静的湖水中投入两块石头后,它们就各自组成了一组水波。两组水波各自进行独立的传播,但又互相影响,相互干扰,这叫“波的干涉现象”。如果我们再仔细观察这两组水波相互干涉时,就会进一步发现,要是两组波峰与波峰相遇,则波浪起伏得更高;同样,如波谷与波谷相遇,则波浪凹处会变得更深。要是一组水波的波峰与另一组水波的波谷相遇,那么波浪就将互相抵消。这种现象就称为“波的叠加现象”。波的叠加原理是:每一个波在其所到达的区域内,都独立地激发起振动,与是否同时存在其他波无关;而当两列波产生干涉,同时作用于某一点上时,则该点的振动等于每列波单独作用时所引起的振动的代数和。我们把能够产生干涉现象的两列波称为“干涉波”。发出相干波的波源称为“相干波源”。
不过需要指出,上述四个特点是笼统地就激光在其整体上与普通光相比较而言的。其实,在实际应用中无需对四个特性都提出很高的要求。例如:全息照相的主要要求是单色性和相干性好;激光通信主要要求是方向性、单色性和相干性好;激光测距主要要求是方向性好和高亮度;激光武器主要要求则是高亮度和方向性好等等。应用目的不同,就应选用或研制不同特点的激光器。

一、激光产生原理
1、普通光源的发光——受激吸收和自发辐射
普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。激发的过程是一个“受激吸收”过程。处在高能级(E2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。辐射光子能量为
hυ=E2-E1
这种辐射称为自发辐射。原子的自发辐射过程完全是一种随机过程,各发光原子的发光过程各自独立,互不关联,即所辐射的光在发射方向上是无规则的射向四面八方,另外未位相、偏振状态也各不相同。由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。
在通常热平衡条件下,处于高能级E2上的原子数密度N2,远比处于低能级的原子数密度低,这是因为处于能级E的原子数密度N的大小时随能级E的增加而指数减小,即N∝exp(-E/kT),这是著名的波耳兹曼分布规律。于是在上、下两个能级上的原子数密度比为 N2/N1∝exp{-(E2-E1)/kT}
式中k为波耳兹曼常量,T为绝对温度。因为E2>E1,所以N2《N1。例如,已知氢原子基态能量为E1=-13.6eV,第一激发态能量为E2=-3.4eV,在20℃时,kT≈0.025eV,则
N2/N1∝exp(-400)≈0 可见,在20℃时,全部氢原子几乎都处于基态,要使原子发光,必须外界提供能量使原子到达激发态,所以普通广义的发光是包含了受激吸收和自发辐射两个过程。一般说来,这种光源所辐射光的能量是不强的,加上向四面八方发射,更使能量分散了。

2、受激辐射和光的放大
由量子理论知识知道,一个能级对应电子的一个能量状态。电子能量由主量子数n(n=1,2,…)决定。但是实际描写原子中电子运动状态,除能量外,还有轨道角动量L和自旋角动量s,它们都是量子化的,由相应的量子数来描述。对轨道角动量,波尔曾给出了量子化公式Ln=nh,但这不严格,因这个式子还是在把电子运动看作轨道运动基础上得到的。
严格的能量量子化以及角动量量子化都应该有量子力学理论来推导。
量子理论告诉我们,电子从高能态向低能态跃迁时只能发生在l(角动量量子数)量子数相差±1的两个状态之间,这就是一种选择规则。如果选择规则不满足,则跃迁的几率很小,甚至接近零。在原子中可能存在这样一些能级,一旦电子被激发到这种能级上时,由于不满足跃迁的选择规则,可使它在这种能级上的寿命很长,不易发生自发跃迁到低能级上。
这种能级称为亚稳态能级。但是,在外加光的诱发和刺激下可以使其迅速跃迁到低能级,并放出光子。这种过程是被“激”出来的,故称受激辐射。
受激辐射的概念世爱因斯坦于1917年在推导普朗克的黑体辐射公式时,第一个提出来的。他从理论上预言了原子发生受激辐射的可能性,这是激光的基础。 受激辐射的过程大致如下:原子开始处于高能级E2,当一个外来光子所带的能量hυ正好为某一对能级之差E2-E1,则这原子可以在此外来光子的诱发下从高能级E2向低能级E1跃迁。这种受激辐射的光子有显著的特点,就是原子可发出与诱发光子全同的光子,不仅频率(能量)相同,而且发射方向、偏振方向以及光波的相位都完全一样。于是,入射一个光子,就会出射两个完全相同的光子。这意味着原来光信号被放大这种在受激过程中产生并被放大
的光,就是激光。
3、粒子数反转
一个诱发光子不仅能引起受激辐射,而且它也能引起受激吸收,所以只有当处在高能级地原子数目比处在低能级的还多时,受激辐射跃迁才能超过受激吸收,而占优势。由此可见,为使光源发射激光,而不是发出普通光的关键是发光原子处在高能级的数目比低能级上的多,这种情况,称为粒子数反转。但在热平衡条件下,原子几乎都处于最低能级(基态)。
因此,如何从技术上实现粒子数反转则是产生激光的必要条件。

激光的特点

第一个特点是——比太阳还要亮百亿倍

太阳光又强、又热,谁也不敢正视耀眼的太阳,可是与激光相比,太阳光就仿佛是小巫见大巫了。梅曼制成的那台红宝石激光器,它发射出的深红色激光是太阳亮度的四倍。而近年来研制出的最新激光,要比太阳表面亮度高出一百亿倍以上!

因为激光器发出的激光是集中在沿轴线方向的一个极小发射角内(仅十分之一度左右),激光的亮度就会比同功率的普通光源高出几亿倍。再加上激光器能利用特殊技术,在极短的时间内(比如一万亿分之一秒)辐射出巨大的能量,当它会聚在一点时,可产生几百万度,甚至几千万度的高温。

第二个特点是——颜色最纯

太阳光分解成红、橙、黄、绿、青、蓝、紫七色光。不同颜色的光,它们的波长是各不相同的。在自然界中几乎找不到波长纯而又纯的光,各种波长的光总是混杂在一起的。

科学家们长期以来一直努力寻找一种波长一致的单色光源。

激光就是这种理想的单色光源。拿氦氖气体激光器来说,它射出的波长宽度不到一百亿分之一微米,完全可以视为单一而没有偏差的波长,是极纯的单色光。

第三个特点是——方向最集中

当我们按亮手电筒或打开探照灯时,看上去它们射出的光束在方向上是笔直的,似乎也很集中,但实际上,当光束射到一定距离后,就散得四分五裂了。唯有激光才是方向最一致、最集中的光。如果将激光束射向月球,它不仅只须花1秒钟左右便能到达月球表面,而且仅在那里留下一个半径为两千米的光斑区。

第四个特点是——相干性极好

当用手将池中的水激起水波,并使这些水波的波峰与波峰相叠时,水波的起伏就会加剧,这种现象就叫干涉,能产生干涉现象的波叫干涉波。激光是一种相干光波,它的波长、方向等都一致。

物理学家通常用相干长度来表示光的相干性,光源的相干长度越长,光的相干性越好。而激光的相干长度可达几十千米。因此,如果将激光用于精密测量,它的最大可测长度要比普通单色光大10万倍以上。

激光的四大特点是互有联系,相辅相成的。

激光也是光,它与普通光没有本质上的区别。但激光又是一种特殊的光,与普通光相比具有方向性好、单色性好、高亮度和优异的相干性四个特点。激光的各种应用正是基于上述特点,在这些方面目前还找不到第二种光源可与激光媲美。

(一)指点江山千里外——方向性好

方向性即光束的指向性,常以a角大小来评价,a角越越小光束发散越小,方向性越好。若a角趋于零,就可近似地把它称作“平行光”。灯光、阳光等普通光是射向四面八方的,根本谈不上方向性。虽然人们可以置光源于透镜或凹面反射镜的焦点上,获得近似“平行光”,但因光源总有一定大小,镜面不可能做到绝对准确,加之镜子孔径衍射引起的发散,就是普通光中方向性最好的探照灯的光束也总有0.01弧度的发散角(1弧度=103毫弧度=57.296度),这是普通光目前利用光学系统后方向性达到的最高水平。

由于谐振腔对光振荡方向的限制,激光只有沿腔轴方向受激辐射才能振荡放大,所以激光射束具有很高的方向性。当然,由于谐振腔反射镜对光存在衍射极限,如不采取一定措施,想使发散角为零是相当困难的。尽管如此,激光的发散角一般在毫弧度数量级,比探照灯光的发散角小10倍以上,比微波小约100倍。激光束借助光学发射系统,a角可小到几乎是零,接近于平行光束。

(二)红橙黄绿青蓝紫——单色性好

从电磁波谱中,我们可以看到,对应一种颜色就有一种波长。“雨后复斜阳,彩虹架长空”,这是我们常见的自然现象,因为太阳光包含着所有可见光的波长,也就是包含着世界上所有的各种颜色,结果却成了白色。所以,“白”光是红、橙、黄、绿、青、蓝、紫各种颜色光的混合。一种光所包含的波长范围越小,它的颜色就越纯,看起来就越鲜艳,通常我们把这种现象称之为单色性高。一般把波长范围小于几埃(1埃=1亿分之一厘米)的一段辐射称为单色光,发射单色光的光源称为单色光源。和激光束的发散角是衡量光束方向性好坏的标志一样,谱线宽度则是衡量单色性优劣的标准。

人们在长期生产和科学实验中,已经创造出很多单色光源,如各种霓虹灯、水银灯、钠光灯等。以往最好的单色光源是同位素氪灯86,它在低温下发出的光波长范围只有约0.005埃,室温下的谱线宽度为0.0095埃,因此它的颜色很鲜艳。激光的出现,在光的单色性上引起了一次大的飞跃。如单色性好的氦氖激光,它的波长范围比千万分之一埃还要小,最小的已经达到一千亿分之几埃,它的单色性比普通光真不知要好多少亿倍。因此,激光是颜色最纯、色彩最鲜的光。

(三)100亿倍于太阳光——亮度高

简单讲亮度,是指光源在单位面积上的发光强度。它是评价光源明亮程度的重要指标。

为了生产实践的需要,光学上规定:光源在单位面积上,向某一方向的单位立体角内发射的光功率称为光源在这个方向上的亮度。在一般照明工程中,亮度单位是“熙提”。简单地讲,1熙提就是在1厘米2的单位面积上发光强度为1烛光。几种光源的亮度见表。

大家知道,电灯要比蜡烛亮得多,炭弧灯又比电灯更亮,而超高压水银灯比炭弧灯又要亮出十几倍。那么,世界上最亮的光源是什么呢?人造小太阳(长弧氙灯)的出现,它的亮度已经赶上了太阳。而高压脉冲氙灯更比太阳亮上10倍。但在激光面前,无论是太阳、人造小太阳,还是高压脉冲氙灯,他们的亮度都算不了什么。一支功率仅为1毫瓦的氦氖激光器的亮度,比太阳约高100倍;一台巨型脉冲的固体激光器的亮度可以比太阳表面亮度高1010倍,即100亿倍。这年光源亮度上是一次何等惊人的大飞跃啊!我们可以毫不夸张地说,激光是现代最亮的光源,它的亮度是过去的一切都望尘莫及。迄今为止,唯有氢弹爆炸瞬间的强烈闪光,才能与它相比拟。在这里我们应该值得注意的是,绝不能把激光的亮度误解为激光器所能给出的光能量,比相同时间内太阳光给出的还多。实际上这是由于激光把脉冲宽度压的很窄、光束的发散角又很小的缘故。

(四)黑白相间条纹清——相干性好

激光是一种相干光,这是激光这一崭新光源与普通光源最重要的区别。那么,什么是光的相干性呢?我们不妨用水波来进行解释:当你同时向平静的湖水中投入两块石头后,它们就各自组成了一组水波。两组水波各自进行独立的传播,但又互相影响,相互干扰,这叫“波的干涉现象”。如果我们再仔细观察这两组水波相互干涉时,就会进一步发现,要是两组波峰与波峰相遇,则波浪起伏得更高;同样,如波谷与波谷相遇,则波浪凹处会变得更深。要是一组水波的波峰与另一组水波的波谷相遇,那么波浪就将互相抵消。这种现象就称为“波的叠加现象”。波的叠加原理是:每一个波在其所到达的区域内,都独立地激发起振动,与是否同时存在其他波无关;而当两列波产生干涉,同时作用于某一点上时,则该点的振动等于每列波单独作用时所引起的振动的代数和。我们把能够产生干涉现象的两列波称为“干涉波”。发出相干波的波源称为“相干波源”。

不过需要指出,上述四个特点是笼统地就激光在其整体上与普通光相比较而言的。其实,在实际应用中无需对四个特性都提出很高的要求。例如:全息照相的主要要求是单色性和相干性好;激光通信主要要求是方向性、单色性和相干性好;激光测距主要要求是方向性好和高亮度;激光武器主要要求则是高亮度和方向性好等等。应用目的不同,就应选用或研制不同特点的激光器。




光有哪些特性
光同时具备以下四个重要特征:1、在几何光学中,光以直线传播。笔直的“光柱”和太阳“光线”都说明了这一点。2、在波动光学中,光以波的形式传播。光就像水面上的水波一样,不同波长的光呈现不同的颜色。3、光速极快。在真空中为3.0×10⁸m\/s,在空气中的速度要慢些。在折射率更大的介...

光有什么特点
光既具有波动性又具有粒子性,在不同实验条件下会表现出不同的性质。波动性体现在光的干涉衍射和折射等现象上,而粒子性则体现在光的能量量子化和光子的存在上。三、光的传播特性:光在传播过程中遵循直线传播原则,以直线路径传播,并且沿着传播方向以波动形式扩散。光可以在空气、水、玻璃等透明介质中...

萤火虫的光有什么特点?
萤火虫的光特点:萤火虫的卵、幼虫、蛹、成虫均能发光,萤火虫幼虫的发光被认为具有警戒、恫吓天敌的作用,而成虫被认为利用闪光进行种的辨认、求偶及诱捕。雌萤并不是简单地选择闪光亮度最强的雄萤,雄性个体大小,移动速度及交配守卫姿势等因素也决定着雌萤对雄萤的选择。雌萤被多只雄萤竞争时,会选择...

直射光的特点
直射光的特点是指光线直接从光源射向物体而无任何干扰或反射。光线传播路径:直射光是从光源沿直线路径传播的光线,没有经过反射、折射或散射等现象。它是由一个点光源发出的平行光束,沿直线方向传播到达物体,形成清晰的影像。光照强度和亮度:直射光具有较高的光照强度和亮度。因为它是由单一的光源发出...

激光与普通的光有什么区别?它有什么特点?
普通光源的发光是以自发辐射为主,各个发光中心发出的光波无论方向、位相或者偏振态都各不相同。激光的发光则是以受激辐射为主,各个发光中心发出的光波都具有相同的频率、方向、偏振态和严格的位相关系。由于这些差别,激光具有强度高,单色性好、相干性好和方向性好等几个特点。

物理。。。关于光的资料
光光是人类眼睛可以看见的一种电磁波,也称可见光谱。在科学上的定义,光是指所有的电磁波谱。光是由光子为基本粒子组成,具有粒子性与波动性,称为波粒二象性。光可以在真空、空气、水等透明的物质中传播。对于可见光的范围没有一个明确的界限,一般人的眼睛所能接受的光的波长在380~760nm之间。人们看到的光来自于...

激光具有哪些特点?
激光也是光,它与普通光没有本质上的区别。但激光又是一种特殊的光,与普通光相比具有方向性好、单色性好、高亮度和优异的相干性四个特点。激光的各种应用正是基于上述特点,在这些方面目前还找不到第二种光源可与激光媲美。(一)指点江山千里外——方向性好 方向性即光束的指向性,常以a角大小来...

小孔成像说明光具有什么特点
沿直线传播。小孔成像说明光具有沿直线传播的特点。光就是光线,在日常生活中所见到的光都是沿着直线传播。

“小孔成像”说明光具有___ 特点
当光源发出的光线照到小孔上时,由于光是沿直线传播的,故在小孔的后方会出现一个倒立的实像,该像的4小情况与光源到孔的距离和光屏到孔的距离有关.故答案为:沿直线传播.

激光具有哪些特点?
2. 单色性:激光的光谱纯度非常高,它几乎只包含一种颜色的光波。这一特性使得激光在精密测量和光谱分析等领域中非常有用。3. 高亮度:激光的亮度远超普通光源。即使是功率很低的激光,其亮度也足以超过太阳光。这种高亮度特性在激光照明和切割等应用中尤为重要。4. 相干性:激光的波长一致性非常高,...

南岔区15531381433: 激光的特性是什么? -
迪振阿斯:[答案] 激光的发射原理及产生过程的特殊性决定了激光具有普通光所不具有的特点:即三好(单色性好、相干性好、方向性好)一高(亮度高). 1 单色性好:普通光源发射的光子,在频率上是各不相同的,所以包含有各种颜色.而激光发射的各个光子频率...

南岔区15531381433: 激光具有哪些特点?快 -
迪振阿斯:[答案] 答:1.定向发光;2.亮度极高;3.颜色极纯;4.能量密度极大.

南岔区15531381433: 激光有什么特点 -
迪振阿斯:[答案] 高亮度(能量集中),单向性(发散角小,能单向传输较长距离),单色性(波长单一,干涉性好),

南岔区15531381433: 激光有什么特点 -
迪振阿斯: 激光的发射原理及产生过程的特殊性决定了激光具有普通光所不具有的特点:即三好(单色性好、相干性好、方向性好)一高(亮度高). 1 单色性好:普通光源发射的光子,在频率上是各不相同的,所以包含有各种颜色.而激光发射的各个光...

南岔区15531381433: 与普通光源发出的光相比,激光有什么特点 -
迪振阿斯: 与一般光相比,激光具有四个特点: (1)亮度高 由于激光的发射能力强和能量的高度集中,所以亮度很高,它比普通光源高亿万倍,比太阳表面的亮度高几百亿倍.亮度是衡量一个光源质量的重要指标,若将中等强度的激光束经过会聚,可在...

南岔区15531381433: 激光有哪些特点20字 -
迪振阿斯: 1、单色性好:波长一定 2、方向性好:激光束的发散角一般小于0.001弧度,接近于平行 3、亮度高:是普通光线的100万倍以上 4、相干性:频率相同、相位差恒定

南岔区15531381433: 激光具有哪些特点?快快快 -
迪振阿斯: 答:1.定向发光;2.亮度极高;3.颜色极纯;4.能量密度极大.

南岔区15531381433: 激光有什么特性 -
迪振阿斯: 激光的特性1960年一种神奇的光诞生了,它就是激光.激光的英文名称是 Laser,它是英语短语“受激发射光放大”中每个实词第一个字母组成的缩略词,它包含了激光产生的由来.它一出现就创造了许多奇迹,真可谓“一鸣惊人”. 激光的...

南岔区15531381433: 激光有哪些特性?
迪振阿斯: 激光之所以是独一无二的,缘于其固有的三个特性:(1) 相干性,在物理学上有两种相干性,空间相干性和时间相干 性.空间相干性是指有统一波阵面的特性,也就是说从激光器发出的光,波峰和波谷都在一条线上,这使得光线是相同的,可聚焦在很 小的面积上.(2) 单色性(时间相干性),即所有光的波长相等.多个激光器可 产生多种波长的光,并且是可预见的,而一种激光器只发出一种波长 的光,这是由激光介质决定的.(3) 平行性,即所有从激光器发出的光线都是平行的,经很远的 距离也不会发散.

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网