无线传输有几种,是不是都是一个原理

作者&投稿:宗政版 (若有异议请与网页底部的电邮联系)
无线传输有几种,是不是都是一个原理~

电视机用天线收信号,手机打电话,电脑通过无线上网传输信息原理是一样的。
但与声音传递信息又有所不同。
无线电传输信息利用的是电磁波,不是共振。
传输信息要经过:信息采集,调制,放大,发射,接收,选台,解调,放大,还原几个步骤。
采集指图像信息和声音信息转变为电信号
调制是发射电磁波的准备过程,因为电信号的频率与原信号频率是一样的(属模拟信号),频率较低(几十到几千赫兹),发射能力差,所以要进过调制把低频信号转变为高频电信号。
再放大(增强能量)
再发射。电信号在天线处转变为电磁波。电视机、手机、电脑一般使用高频的微波信号。
接收端的天线接收到信号(微波)
有时要先进行放大。然后选台。选台是指选出需要的信号。举个例子,甲电视台发射新闻联播,乙电视台发射电视剧,他们所发射电磁波的频率是不同的,天线能接收到所有信号,但不能同时演奏所有信号,只能选一个出来。
解调是指把高频的信号转化为原低频信号电流。
最后放大信号并由播放器把信号还原为图像或声音。
在使用电脑时需要用网卡上网,或者说用moden,其实它就是调制解调器。是同时能进行调剂信号并发射,接收信号并解调的机器。

:智能天线去干扰Martin Cooper自适应天线阵列通过虚拟线路连接移 动用户,极大地改善了无线通讯。

我们每天都沉浸在射频无线电波的海洋之中,看不见的电磁能有不同的源头:广播塔、蜂窝电话网和警察的无线通讯等等。这些辐射也许对人体无害,但它们会严重影响我们收发信息。过度的无线能量也是一种污染,因为它将破坏有用的通信。随着电子通信的日益频
繁,无线电干扰也日渐嘈杂,我们环境中射频干扰信号强度的增加,使我们必须加大无线信号的强度,才能在背景电磁噪声中将有用信号区分开来。

解决这个问题的一种方案是采用新型的射频天线,这种天线能够极大地减少人为干扰。以蜂窝电话通讯为例,采用这种全新的天线后,我们无须采用对用户的通话进行全向广播发送这种浪费的方式,而代之以跟踪移 动用户的位置并将无线信号直接发送给他。这种天线系统在使其他用户受到的干扰最小化的同时,也使得目标用户的接受信号强度达到最大。实际上,这等同于给每个移 动用户建立了一条虚拟的有线连接。

这些系统通常被称为智能天线,它们之中最智能的那种又被称为自适应天线阵列。1992年我和他人一起在美国加州圣荷赛创立了爱瑞公司,致力于开发能应用于已有和新的无线网络的自适应天线阵列。每个阵列包含了多达12根的天线以及一个强大的数字处理器(用于对输入输出信号的合并和处理)。朗讯、北电以及其他一些公司也都在开发这项技术。我们的目标都是降低成本和提高无线通讯的质量。现在自适应天线阵列已经向数以百万的蜂窝电话用户提供这些好处。此外,由于非常适合大量数据的传送和接收,它们极有可能成为无线因特网的关键部分。

天线的物理学原理

要了解智能天线的工作原理,先要了解比较“笨拙”的普通天线。射频天线将发射机产生的电流和电压信号转变为电磁波并将之发射出去,同时天线也能截取这些电磁波并将之转化为接收机能处理的电流和电压信号。最简单最常用的天线是偶极子,它不过是特定长度的能向空间全向发射能量的杆而已。无线电波在空中传播的过程中,强度逐渐减弱,并被空气、树木和建筑等障碍物吸收。

商用广播和电视台必须向地理分布上分散的用户提供服务,自然要进行全向广播,而一次蜂窝电话通讯通常只针对一个用户。在蜂窝网中,用户和最近的基站进行通信,在基站里有一套天线负责处理周围区域(称作小区)内所有的无线业务信号。基站按照一定的规律设立,使整个覆盖区域能划分为多个小区;用户从一个小区移 动到另一个小区时,系统能自动将通话切换到其他合适的基站。在这种情况下,如果能将无线能量集中到单个用户身上,就像手电筒通过反射镜将光线集中成束那样,效率就会高得多。同样的功率,集束的信号能比全向发射的信号,传播到远得多的地方。基站向不同用户发送的波束在空间上是分开的,这样相互干扰也降低了。

反射器能把无线电波聚焦成束,但是它们实在是又笨重又昂贵。所以工程师们想出了许多不用反射器却能产生无线波束的办法。如果我们并排放置两根天线,它们之间的距离是无线信号波长的一半,那么从上面看下去时,这个简单阵列发射能量的方向图就是8字型的。在垂直于阵列(即垂直于两根天线之间的连线)的两个方向,无线电波的传送距离将达到最大,因为在这两个方向上用户能同时收到两根天线发送的信号(换句话说,就是两个信号是同相的)。然而,在平行于阵列的方向上,用户将接收到相位相差180度的两股信号。两股信号的波峰和波谷相遇之后就彼此抵消了,因此就产生了零区,在那里将检测不到任何信号。

这种由两根天线组成的天线阵列的波束是相当宽的,而且它还将向两个相反的方向发射。通过加入更多的天线,波束的宽度变得越来越窄。二战以来,这种类型的相阵天线被用于雷达波束的聚焦。虽然天线数目的增加使得波束变得更窄,同时却在主波束旁边产生了更多的旁瓣。根据用户方向的不同,波束信号既有可能比单天线发射的信号更强(“增益”),也有可能由于抵消效应的存在变得比后者更弱(“损失”)。

波束的定向如果不能指向特定的接收者,无线波束还是没有多大用途。最显而易见的解决方案就是移 动天线阵列本身,但显然这个办法是笨拙和代价昂贵的。用电子的方法来操纵波束将简便得多。通过一种叫波束切换的技术,天线阵列能产生一组相互有所交叠的波束,这些波束在一起就能覆盖周围的区域。当一个蜂窝电话用户进行通话时,无线接收机首先确定从哪个波束方向来的用户信号最强,然后阵列发射机就按照这个来波方向给用户“回话”。如果用户从原有波束走入另一个相邻的波束,控制系统就自动将发射和接收都切换到那个新的波束。

然而波束切换在现实的无线通信环境中还是不能很好地工作。只有当用户处于波束正中央时,波束才是最有效的。正如离开手电筒的光线方向就会变暗一样,一旦用户离开波束中心,信号就会发生衰落。当用户靠近波束的最边缘时,在系统将之切换到相邻波束之前,信号强度会发生相当大的衰落。如果另一方向上的某个用户需要使用同一无线信道怎么办?如果第二个用户处于零场,还好不会给前一位用户带来干扰,但是一旦他处于某个旁瓣的中心,那么给他的信号将会阻塞或扭曲前一位用户的信号。

波束切换系统的另一个问题是,实际上在几乎所有的环境中,无线信号都很少沿着直接路径进行传播。我们手机上接收到的信号通常是由多个反射信号合并而成的。反射体可能是自然或者人造的物体(建筑、山脉、汽车和树木等等)。这些发射信号还在不停地变化,特别是那些由大型车辆(例如巴士)造成的。这种所谓的多径现象也会影响从手机发送到基站的信号。在波束切换系统中,如果用户靠近波束的边缘,那么他或她所发送的信号有可能在到达天线阵列前就被反弹到其他波束中。在这种情况下,天线阵列就有可能发送错误的波束,用户则可能完全得不到回应的信号。

在实际应用中,只有波束切换系统显然是不够的。一个真正智能的天线阵列应该能直接给移 动用户一个波束,而不是选择一个相对靠近用户的波束。理想的天线阵列还必须能调整波束的方向图,将来自同一频段信道上其他用户的干扰最小化。最后,这种天线阵列必须能根据用户位置和反射的迅速变化做出快速反应。这些都是为什么要引入自适应天线阵列的原因。

鸡尾酒会效应

是什么使自适应天线阵列具有这样的智能?最关键的因素就在于对天线接收下来信号的处理,这就好比人脑对耳朵所接收的声音信息进行的处理一样。一个听力正常的人,即使眼睛被蒙上,通常也能定位声音,因为外耳上那些盘绕的皱褶会根据声音方向的不同而产生不同的共鸣。除非声音来自于头顶正上方或正下方(或者正前正后),否则它到达两耳的时间就会有差别。大脑就是根据这些接收的信息,快速计算出声源位置的。

此外,拥有正常听力的人能够从吵闹的环境噪声中提取相对较轻的声音,比如说某个他感兴趣的谈话,这种效应通常被称为鸡尾酒会效应。研究者们发现,专注于某种声音的能力,部分来源于定位声源的能力。在一项测试人们分辨背景噪音中信号的能力实验中,与用单耳的测试对象相比,用两耳听的测试对象能听到轻得多的声音。一旦大脑能够确定声源的方位,它就能专注于该声音而忽略从其他不同方向来的噪音。

与之相类似,自适应天线阵列能精确定位无线信号的源头。通过消除其他干扰信号,就能够选择性地放大有用的信号。天线阵列的“大脑”是一个能处理天线接收信号的数字处理器。典型的自适应阵列包含4到12根天线,但是为了简便起见,让我们来看一个两根天线的阵列。天线间的距离是信号波长的一半。对于普通的阵列而言,来自两根天线的信号只是普通的相加;但在自适应阵列中,两部分信号被送到处理器中,在那里可以对信号进行任意的数学处理。

例如,假设该阵列是南北放置的,而来自某个手机用户的信号来自于东边。处理器能迅速确定信号的方向:因为电磁波同时到达两根天线,它们必然是来自一个垂直于阵列的方向。为了使接收信号最大化,处理器将两股信号相加,使它们的强度翻倍。在向该用户回送信号时,阵列的两根天线上就会发送相同的信号。

现在让我们来假设以下情况:另一个手机用户从南边发送了一个信号。因为到达北边天线的电磁波和到达南边天线的电磁波间存在180度的相位差,处理器就知道信号是来自于一个和阵列平行的方向。这时处理器就将两股信号进行相减,也就是说,改变北(或南)天线接收信号的极性,将波峰变为波谷(或相反),然后将所得镜像信号加到南(或北)天线的接收信号上。同样地,信号的强度得到加倍。当阵列向该用户传送信号时,处理器向某一根天线发送一个反相的信号,因而产生一个从北到南的波束。请注意,以上两个例子中,针对一个手机用户的波束不会到达另一个手机用户。这两个用户可以同时在同一频率上与自适应阵列进行通讯,它们的信号不会彼此干扰。对来自两根天线的信号采用更为复杂的数学运算,阵列处理器同样也能在其他方向上产生波束。选择性收发的问题在这里就转化成为解一系列联立方程的问题。对于那些移 动的用户,处理器必须根据不断更新的信息反复求解这些方程。

在自适应阵列中加入更多的天线,将增加定位的精度和对信号的增益。拥有12根天线的阵列能够听到比单根天线所能听到信号弱12倍的信号。阵列能以12倍的强度发送信号并具有大得多的指向性。处理器能对天线接收信号进行处理以产生波束方向图,使得对某一所需信号的增益最大,同时保证对同一频段上其他信号的阻塞作用最大。

由于处理器的速度快到足以在一秒内处理多次这样的任务,当手机用户在步行或开车通过该天线阵列的覆盖区域时,阵列就可以持续地调整波束。系统的设计保证了车辆和建筑物对用户信号的杂散谐振不会引发波束方向的剧烈变化。通过跟踪用户的路径,阵列能够估计用户下一步的运动方向,并排除那些指示用户位置发生突变的错误信息。

此外,更为先进的自适应天线阵列,能够利用多径现象对无线信号进行进一步的聚焦。这些处理器的能力是如此之强大,以至于我们能把在自适应天线阵列和手机之间各种不同路径上传送的信号都利用起来。通过在数学方程中引入多径分量,处理器不仅能够算出信号的来波方向,还能算出用户的精确位置。在拥有丰富反射体的城市环境中,自适应阵列能从手机周围的一小块区域内接收并向其发送信号。这种情况下,天线阵列产生的不再是波束,取而代之的是一个半径仅为数厘米的“个人小区”。由于阵列能够不停地反复计算手机的位置,这样个人小区就能跟随手机使用者而移 动。

优点与应用

与传统的蜂窝网络相比,采用自适应天线阵列的无线网络具有很多优点。对于同样的功率,由于装备有自适应阵列的基站的覆盖范围比普通基站大得多,因而覆盖同样的区域,所需基站的数量也相应减少。尽管自适应阵列可能比传统的天线更昂贵,但基站数目的减少能急剧降低设置和运营无线网络的成本。自适应阵列使得蜂窝业务公司能更好地利用希缺的资源:分配给该公司的频谱。许多蜂窝网络正因用户数目的增多而过载:在某些拥挤的区域,有时候同时迸发的信号量超过了系统中有限数目的无线信道所能承载的数量。当通话掉话或者信号质量下降时,用户就能感受到这种紧张。由于自适应阵列允许同一基站覆盖范围内的一些用户同时使用同一无线信道,因此就增加了频谱的容量。相对于普通天线而言这种改进是显著的:对语音业务,配备有自适应阵列的基站的用户容量提高了6倍;对于数据业务,这一数字更是高达40倍。采用自适应天线阵列的结果是更好的服务和更少的干扰,除此之外还有较少的能量浪费和射频污染。

这样,我们就不会为自适应天线已经获得的商业应用感到吃惊。在日本、中国、泰国以及亚洲和非洲的其他一些地区,已有超过15万的基站装备了使用爱瑞公司技术的天线阵列,为总计超过1500万人提供电话服务。自适应阵列在美国和欧洲的商业应用进展得相对比较缓慢,这要部分归咎于电信业不景气所导致的对蜂窝网络新投资的削减。但是还是有一家美国制造商(佛罗里达州蒙特利尔的Airnet公司),正在生产使用爱瑞公司技术的蜂窝基站。同时英国的电信公司马可尼也正在开发一种包含自适应阵列的先进基站。

自适应阵列对无线数据网络而言也是一大福音。因为这种阵列能够使干扰最小化,所以在给定的频率范围内可以传送和接收更多的数据。一个装备有自适应天线阵列的基站能同时为40位用户提供速度高达1M字节每秒的数据服务,这大约是现有远程无线网络典型数据率的20倍。在此类网络中,并非所有的用户都在同时要求获得峰值数据率的服务,所以一个装备自适应天线阵列的基站可以为数千用户提供服务。拥有便携式电脑或其他便携设备的用户,就能在步行或开车通过服务区的同时保持对因特网的高速连接。

自从1990年代末,电信业就开始欢呼无线因特网的到来。虽然新网络的发展速度并不像预期的那样快,但还是在逐步取得进展。随着无线运营商对3G网络(能以包的形式传递数据的下一代蜂窝系统)的继续追求,其他的公司也正在提供多种有竞争力的高速数据传输解决方案,其中有些解决方案就采用了智能天线并能在现有网络中使用。一个采用了爱瑞公司技术的数据网络正在澳大利亚悉尼运营着,类似的网络很快将在美国和韩国建立。美国德州Navini NetWork公司开发的自适应阵列,正在接受一些无线运营商的测试。一些大型电信设备执照商也准备在它们的下一代产品中采用智能天线技术。

在贝尔发明电话之后的近100年中,语音通讯始终依赖于呼叫者和网络间的物理链接(铜线或者同轴电缆)。只是在过去的30年里,蜂窝电话才开始让我们享受到一些无线通讯的自由。有了自适应天线阵列技术,终有一天无线运营商能以更低廉的价格提供比有线网络质量更好的服务。到那时,我们就从金属铜的牢笼中解放出来了。

二:雷达波的反射率视物体而定:
(1)太阳系还存在着众多小行星和彗星,小行星因质量小,绝大多数不是球形,而是具有不规则的形状。绝大多数的小行星,都是在火星和木星轨道之间。很多小行星上的矿藏更为诱人,它们含有很多稀有矿物。如:美国人发现并命名的1986DA小行星,其直径约为2公里,对雷达波的反射率高达58%,据此分析,在这颗小行星中含有10万吨铂、十几万吨金和10亿吨镍,直接经济总价值高达1.5万亿美金。
(2)经过雷达检测分析,土卫八的"白半脸"主要由水和冰的混合物组成。通常纯净的水冰对雷达波的反射率都很强,但是这些水冰混合物与其它星球上检测到的不一样,它们对雷达波的反射率很低。天文学家推测,这是有少量氨水冰与水冰混合在一起后产生的结果。而这种混合物在光学观察过程中看起来依然像干净水冰一样光彩熠熠。天文学家很早就猜测过土卫八含有氨水,但是从来没有得到过直接证据,通过雷达观察检测,这个观点已经得到了更充分的证明。但是,谜似乎仍然没有揭开。

天文学家通过雷达系统发现,组成土卫八的物质分布非常均一,这个星球在物质分布上并没有差异或者地域界限。这意味着,在土卫八的黑半脸上,仅仅有很薄一层发黑的物质覆盖在氨水和水的混合冰层上,这层薄纱一样的黑物质不过像一件黑绸,盖在了一堆洁白的雪上。这层很薄的黑纱对雷达微波反射基本上不够成损耗影响,所以所有地方反射率都一样。为什么会这样,只有得到构成那层黑纱的物质并知道了它的化学组成后,才会有真正的答案。

也是使用tcp/ip协议通信传输网络,和有线网大同小异,只是传输介质不同,有线使用铜线介质传输,无线使用无线电波传输,这样无线电有频率和波段,大多数咱们使用的无线路由器WiFi都是2.4G或5G 波段的信号传输。

与有线传输相比,无线传输具有许多优点。或许最重要的是,它更灵活。无线信号可以从一个发射器发出到许多接收器而不需要电缆。所有无线信号都是随电磁波通过空气传输的,电磁波是由电子部分和能量部分组成的能量波。
在无线通信中频谱包括了9khz到300000Ghz之间的频率。每一种无线服务都与某一个无线频谱区域相关联。无线信号也是源于沿着导体传输的电流。电子信号从发射器到达天线,然后天线将信号作为一系列电磁波发射到空气中。
  信号通过空气传播,直到它到达目标位置为止。在目标位置,另一个天线接收信号,一个接收器将它转换回电流。接收和发送信号都需要天线,天线分为全向天线和定向天线。在信号的传播中由于反射、衍射和散射的影响,无线信号会沿着许多不同的路径到达其目的地,形成多径信号。
无线通信原理——基本原理
  无线通信是利用电波信号可以在自由空间中传播的特性进行信息交换的一种通信方式。在移动中实现的无线通信又通称为移动通信,人们把二者合称为无线移动通信。简单讲,无线通信是仅利用电磁波而不通过线缆进行的通信方式。
  1,无线频谱
  所有无线信号都是随电磁波通过空气传输的,电磁波是由电子部分和能量部分组成的能量波。声音和光是电磁波得两个例子。无线频谱(也就是说,用于广播、蜂窝电话以及卫星传输的波)中的波是不可见也不可听的——至少在接收器进行解码之前是这样的。
  “无线频谱”是用于远程通信的电磁波连续体,这些波具有不同的频率和波长。无线频谱包括了9khz到300 000Ghz之间的频率。每一种无线服务都与某一个无线频谱区域相关联。例如,AM广播涉及无线通信波谱的低端频率,使用535到1605khz之间的频率。
   当然,通过空气传播的信号不一定会保留在一个国家内。因此,全世界的国家就无线远程通信标准达成协议是非常重要的。ITU就是管理机构,它确定了国际无线服务的标准,包括频率分配、无线电设备使用的信号传输和协议、无线传输及接收设备、卫星轨道等。如果政府和公司不遵守ITU标准,那么在制造无线设备的国家之外就可能无法使用它们。
  2,无线传输的特征
  虽然有线信号和无线信号具有许多相似之处——例如,包括协议和编码的使用——但是空气的本质使得无线传输与有线传输有很大的不同。
  正如有线信号一样,无线信号也是源于沿着导体传输的电流。电子信号从发射器到达天线,然后天线将信号作为一系列电磁波发射到空气中。信号通过空气传播,直到它到达目标位置为止。在目标位置,另一个天线接收信号,一个接收器将它转换回电流。
3,天线
  每一种无线服务都需要专门设计的天线。服务的规范决定了天线的功率输出、频率及辐射图。
 无线信号传输中的一个重要考虑是天线可以将信号传输的距离,同时还使信号能够足够强,能够被接收机清晰地解释。无线传输的一个简单原则是,较强的信号将传输的比较弱的信号更远。
  正确的天线位置对于确保无线系统的最佳性能也是非常重要的。用于远程信号传输的天线经常都安装在塔上或者高层的顶部。从高处发射信号确保了更少的障碍和更好的信号接收。
  4,信号传播
  在理想情况下,无线信号直接在从发射器到预期接收器的一条直线中传播。这种传播被称为“视线”(Line Of Sight,LOS),它使用很少的能量,并且可以接收到非常清晰的信号。不过,因为空气是无制导介质,而发射器与接收器之间的路径并不是很清晰,所以无线信号通常不会沿着一条直线传播。当一个障碍物挡住了信号的路线时,信号可能会绕过该物体、被该物体吸收,也可能发生以下任何一种现象:发射、衍射或者散射。物体的几何形状决定了将发生这三种现象中的那一种。
  (1)反射、衍射和散射
  无线信号传输中的“反射”与其他电磁波(如光或声音)的反射没有什么不同。波遇到一个障碍物并反射——或者弹回——到其来源。对于尺寸大于信号平均波长的物体,无线信号将会弹回。例如,考虑一下微波炉。因为微波的平均波长小于1毫米,所以一旦发出微波,它们就会在微波炉的内壁(通常至少有15cm长)上反射。究竟哪些物体会导致无线信号反射取决于信号的波长。在无线LAN中,可能使用波长在1~10米之间的信号,因此这些物体包括墙壁、地板天花板及地面。
  在“衍射”中,无线信号在遇到一个障碍物时将分解为次级波。次级波继续在它们分解的方向上传播。如果能够看到衍射的无线电信号,则会发现它们在障碍物周围弯曲。带有锐边的物体——包括墙壁和桌子的角——会导致衍射。
  “散射”就是信号在许多不同方向上扩散或反射。散射发生在一个无线信号遇到尺寸比信号的波长更小的物体时。散射还与无线信号遇到的表面的粗糙度有关。表面也粗糙,信号在遇到该表面是就越容易散射。在户外,树木会路标都会导致移动电话信号的散射。
  另外,环境状况(如雾、雨、雪)也可能导致反射、散射和衍射
  (2)多路径信号
  由于反射、衍射和散射的影响,无线信号会沿着许多不同的路径到达其目的地。这样的信号被称为“多路径信号”。多路径信号的产生并不取决于信号是如何发出的。它们可能从来源开始在许多方向上以相同的辐射强度,也可能从来源开始主要在一个方向上辐射。不过,一旦发出了信号,由于反射、衍射和散射的影响,它们就将沿着许多路径传播。
无线信号的多路径性质既是一个优点又是一个缺点。一方面,因为信号在障碍物上反射,所以它们更可能到达目的地。在办公楼这样的环境中,无线服务依赖于信号在墙壁、天花板、地板以及家具上的反射,这样最终才能到达目的地。
  多路径信号传输的缺点是因为它的不同路径,多路径信号在发射器与接收器之间的不同距离上传播。因此,同一个信号的多个实例将在不同的时间到达接收器,导致衰落和延时。
 5,固定和移动
  每一种无线通信都属于以下两个类别之一:固定或移动。在“固定”无线系统中,发射器和接收器的位置是不变的。传输天线将它的能量直接对准接收器天线,因此,就有更多的能量用于该信号。对于必须跨越很长的距离或者复杂地形的情况,固定的无线连接比铺设电缆更经济。
  不过,并非所有通信都适用固定无线。例如,移动用户不能使用要求他们保留在一个位置来接收一个信号的服务。相反,移动电话、寻呼、无线LAN以及 其它许多服务都在使用“移动”无线系统。在移动无线系统中,接收器可以位于发射器特定范围内部的任何地方。这就允许接收器从一个位置移动到另一个位置,同时还继续接受信号。
具体的数据传输原理是一样的:数据是0和1 任何复杂的数据都是通过0和1表达出来的 比如说 发送 您好 两个字 还原成最本质的数据就是一串0和1混在一起的数字 而0和1对于物理层来说 就是两种状态 所以理论上 任何能表示两种状态的物理现象并且可以传播的都可以用于传输数据 包括光 电 电磁波等等

比如说 可以用灯灭表示0 灯亮表示1 那我在远处对着你恍恍手电筒就完成了一次无线传输。
而对于日常用到的无线传输 采用的是电磁波的方式
电磁波的传输原理大概是:电流流过导体时 会对周围产生电磁波 而导体在电磁波环境中 会产生电流
这样 我这边用一根铁棍 两边接上电 然后控制铁棍中的电流 就会在空间中产生一定规律的电磁波 而对应的 另一方在我产生的电磁波的范围内 放另一根铁棍 这根铁棍里就会产生有规律的电流 这样就完成了物理层面上最基本的两种状态的表达 从而传输了数据。
通常我们管这样的铁棍叫做天线
目前

无线传输有三种:专用视频无线传输设备、移动通信网络、无线局域网传输。原理是不同的。
专用视频无线传输设备
在不易施工布线的近距离场合,采用无线方式来传送视频图像是最合适的。无线视频传输由发射机、接收机及其天线组成,每对发射机和接收机有相同的频率,除传输图像外,还可传输声音。无线视频传输具有一定的穿透性,但在应用时是有限制的,如无线传输设备在采用2.4GHz频率,一般只能传200~300m,若试图通过增大功率来传得更远,则可能会因干扰正常的无线电通讯而受到限制。微波视频传输可以是固定(基站)型,也可以是移动型(车载或个人携带)。
随着视频压缩技术的发展,网络视频技术实现了模拟视频的数字化处理,将连续的模拟信号通过A/D芯片转换后交由专用数字信号处理器处理,并按照IP包的格式进行数据封装,以网络信号发送出去。这样在无线网络中的传输设备就被引进到视频监控系统当中。对于无线设备,它可以透明地传输网络视频信号,进而实现无线的网络视频传输。这方面的代表是无线微波扩频技术,主要的代表厂家是摩托罗拉。这种传输方式可以实现54M的汇聚带宽,传输距离可以达到几十公里,在林区监控、油田监控等一些特殊的应用现场应用广泛。
移动通信网络
我国公用蜂窝数字移动通信网GSM通信系统采用900MHz频段,载频间隔为200 kHz,目前,中国移动GPRS的数据网络下行带宽能稳定在20kbps-22kbps,中国联通CDMA的数据网络下行带宽能稳定在40kbps。因此只能传输经过压缩的数字图像,且清晰度与每秒帧数较低。
GPRS(General Packet Radio Service)是一种基于GSM系统的无线分组交换技术,提供端到端的、广域的无线IP连接。GPRS对无线视频监控业务的主要贡献是提供一种方便的接入模式,用户只要在有手机信号的地方就可以通过GPRS模块接入网络。但它的缺点是带宽较小,只适合于低帧率、低画质视频的传输,主要面向个人用户。
3G(3rd Generation)指第三代移动通信技术。第三代手机是指将无线通信与国际互联网等多媒体通信结合的新一代移 动通信系统。它能够处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务。为了提供这种服务,无线网络必须能够支持不同的数据传输速度,也就是说在室内、室外和行车的环境中能够分别支持至少2Mbps(兆字节/每秒)、384kbps(千字节/每秒)以及144kbps的传输速度。
无线局域网传输
无线局域网,一般是透过ISM(1ndustrial、Scientific、Medicine)band,也就是开放给工业研究、科学研究、医疗等用途的频道,在规范的范围内可不经申请即可使用。FCC(Federal Communication Commission,美国联邦通信委员会)所规范的ISM band分别有900MHz、2.4GHz、5.8GHz等,均属于微波频段。其中以2.4GHz的无线局域网最为普及,原因是IEEE802.1lb标准的制订,使得相关的IC因产量高而降低价格,进而得以普及。

电视机用天线收信号,手机打电话,电脑通过无线上网传输信息原理是一样的。
但与声音传递信息又有所不同。

无线电传输信息利用的是电磁波,不是共振。

传输信息要经过:信息采集,调制,放大,发射,接收,选台,解调,放大,还原几个步骤。
采集指图像信息和声音信息转变为电信号
调制是发射电磁波的准备过程,因为电信号的频率与原信号频率是一样的(属模拟信号),频率较低(几十到几千赫兹),发射能力差,所以要进过调制把低频信号转变为高频电信号。
再放大(增强能量)
再发射。电信号在天线处转变为电磁波。电视机、手机、电脑一般使用高频的微波信号。

接收端的天线接收到信号(微波)
有时要先进行放大。然后选台。选台是指选出需要的信号。举个例子,甲电视台发射新闻联播,乙电视台发射电视剧,他们所发射电磁波的频率是不同的,天线能接收到所有信号,但不能同时演奏所有信号,只能选一个出来。
解调是指把高频的信号转化为原低频信号电流。
最后放大信号并由播放器把信号还原为图像或声音。

在使用电脑时需要用网卡上网,或者说用moden,其实它就是调制解调器。是同时能进行调剂信号并发射,接收信号并解调的机器。

传输原理基本接近,传输工具略有差异,可通过高塔或卫星传输。
高塔是利用的大气电离层反射。

最佳答案
无线传输是利用电磁波。分发射部分和接收部分。发射部分由产生高频信号的振荡器,将音频信号加到电磁波上的调制器和高频功率放大器,最后由天线发射到空间去。接收部分由接收天线,高频放大,变频器,中频放大器,检波器和音频功率放大器等组成,最后由喇叭还原出声音。
现在无线传输已经超出了广播通信的范围。如无线电导航,无线电定位等许多领域。还有人进行无线电力传输。但前景不太好。


网线分几种型号,它们的区别是,传输距离各是多少?
双绞线又可分屏蔽双绞线(STP)和非屏蔽双绞线(UTP),屏蔽双绞线相对非屏蔽双绞线要更好,因为它的线芯有一层金属隔离膜,在数据传输的时候可以减少外界的电磁干扰。而非屏蔽线就没有这样功能,因此,屏蔽双绞线传输数据要更加稳定,不过它的价钱也相对要贵很多。一类线:最早的电话线缆,只有两根芯线...

在局域网中,常用的有线传输介质有哪些,各有何特点?
双绞线 分类:非屏蔽双绞线(UTP)可分为3类、4类、5类和超5类等多种;屏蔽双绞线(STP),可分为3类、5类、超5类等多种。主要特点:非屏蔽双绞线易弯曲、易安装,具有阻燃性,布线灵活。屏蔽双绞线价格高,安装困难,需连结器,抗干扰性好。主要用途:3类线用于语音传输及最高传输速率为10...

日常生活中的传输线有几种
包括SATA线 IDE线 5类线 4类线 3类线 2类线 超5类线 6类线 超6类线 同轴电缆 ……通常传输电视信号的 闭路电缆属于同轴电缆电缆的一种 中间有铜线以及其他良好导体,外包绝缘层,绝缘层外有铝铂纸,之外有屏蔽层(一些小线)最外是保护套 屏蔽线和中心线建议不要短路,事实上短路并不会对...

有线电视的干线传输有哪几种形式,其特点是什么?
�0�2�0�2 有线电视的干线传输有同轴电缆、光缆和微波三种传输方式。同轴电缆是最早发展起来的,它是用粗线径的同轴电缆做干线来传输信号。由于系统越来越大,传输距离越来越长,结果造成视频和音频信号衰减严重,因此每隔几公里必须要插入一级宽频带的干线放大器,...

计算机网络中传输介质有几种?各有什么特点?其特性有什么?(
分为有线传输介质和无线性传输介质。一、有线传输介质:1、双绞线优缺点:成本低,密度高,节省空间,安装容易,高速率,抗干扰性一般,连接距离较短。2、同轴电缆 优缺点:抗干扰性好,接入复杂。3、光纤 优缺点:通信容量大,传输损耗小,抗干扰性好,保密性好,体积小重量轻,需要专用设备连接。二...

什么是有线通信?可以分为几类?分别是什么?
有线通信是一种通信方式,狭义上现代的有线通信是指有线电信,即利用金属导线、光纤等有形媒质传送信息的方式。光或电信号可以代表声音,文字,图像等。有线通信可以分为四类。1、传输内容:有线电话,有线电报,有线传真等。2、调制方式:基带传输、调制传输。3、传输信号特征:数字通信、模拟通信。4...

数据传输方式分为哪几种?
按照不同分类可以分为7种。1、并行传输 并行传输指的是数据以成组的方式,在多条并行信道上同时进行传输,是在传输中有多个数据位同时在设备之间进行的传输。常用的是将构成一个字符的几位二进制码同时分别在几个并行的信道上传输。并行传输时,一次可以传一个字符,收发双方不存在同步的问题。而且速度...

微波传输线主要有哪几种类型,其主要特点是什么
是本世纪70年代出现的一种受到广泛欢迎的传输线。以上就是传输线分类有哪些的全部内容了,当然,传输线不仅用于传送电能和电信号,还可以构成电抗性的谐振元件。例如,长度小于1\/4波长的终端短路或开路的传输线,其输入阻抗是感抗或容抗;长度可变的短路线可用作调配元件(短截线匹配器)。

计算机网络的有线介质包括什么
有线传输介质是指在两个通信设备之间实现的物理连接部分,它能将信号从一方传输到另一方,有线传输介质主要有双绞线、同轴电缆和光纤。双绞线和同轴电缆传输电信号,光纤传输光信号。双绞线:双绞线简称TP,将一对以上的双绞线封装在一个绝缘外套中,为了降低信号的干扰程度,电缆中的每一对双绞线一般是...

网线分哪几类
最大传输速度也可达到10Gbps ,在外部串扰等方面有较大改善。七类线:该线是ISO\/IEC 11801 7类\/F级标准中于2002年认可的一种双绞线,它主要为了适应万兆以太网技术的应用和发展。但它不再是一种非屏蔽双绞线了,而是一种屏蔽双绞线,所以它的传输频率至少可达600 MHz,传输速率可达10 Gbps。

长汀县19628603086: 无线传输有几种,是不是都是一个原理 -
何炎慢心: 电视机用天线收信号,手机打电话,电脑通过无线上网传输信息原理是一样的.但与声音传递信息又有所不同.无线电传输信息利用的是电磁波,不是共2113振.传输信息要经过:信息采集,调制,放大5261,发射,接收,选台,解调,放大...

长汀县19628603086: 无线传输的主要方式 -
何炎慢心: 主要传输方式:1.视频基带传输 是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号. 2.光纤传输 常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的...

长汀县19628603086: 无线数据传输方式的类型有几种?它们的优势是什么? -
何炎慢心: 1、2.4G 无线数据传输.2.4G模块低功耗设计,理想传输距离在1.5公里,通常用于传输距离比较近的数据采集. 2、433M无线数据传输.433M模块,信号强,传输距离长,理想传输距离在3公里左右.还有穿透、绕射能力强,传输过程衰减较...

长汀县19628603086: 简述几种无线传输介质的区别? -
何炎慢心: 在计算机网络中,无线传输可以突破有线网的限制,利用空间电磁波实现站点之间的通信,可以为广大用户提供移动通信.最常用的无线传输介质有:无线电波、微波和红外线 无线电波无线电波是指在自由空间(包括空气和真空)传播的射频...

长汀县19628603086: 网线和WiFi是一个原理吗? -
何炎慢心: 原理是一样的,跑相同的tcp/ip协议传输信息,只不过传输的介质不同,网线是copper,铜缆,wifi是无线传输.

长汀县19628603086: 物联网中的无线传输技术有哪些 -
何炎慢心: RFID,射频识别,RFID(Radio Frequency Identification)技术,又称无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触. NFC,这个技术由非接触式射频识别...

长汀县19628603086: 无线传输与有线传输有什么区别? -
何炎慢心: 这么简单的问题还要问,无线就是不用线缆传递信息(传输包括数据,视频,声音...); 有线传输就是用线缆传输信息,如光纤,同轴电缆,双绞线等等都是有线传输的, 另外再给你说说无线传输的大概原理: 无线电技术的原理在于,导体中...

长汀县19628603086: 无线通讯技术有多少种?具体是那些? -
何炎慢心: 无线通讯技就是包括移动通信,微波通信,卫星通信在内的通信技术手段. 它的特点就是利用不同波长的交变无线电波传输信息,比如:声音,图像等. 近距离的有蓝牙,zigbee,覆盖范围10米以内.100米左右的Wifi. 中距的有无线城域网WiMax,现在的蜂窝移动通信技术,3G,B3G等. 远距的卫星通信等.

长汀县19628603086: 无线传输媒体有哪几种技术?
何炎慢心: 传输媒体无线编辑无线传输媒体都不需要架设或铺埋电缆或光纤,而通过大气传输,上前有三种技术:微波、红外线和激光

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 星空见康网